Ungleichung beweisen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:43 Mi 03.11.2004 | Autor: | Cophidia |
Hallo Ihr Lieben,
brauch mal wieder Euren Rat bei folgender Aufgabe:
Es sei K ein angeordneter Körper. Zeigen Sie, daß für alle n [mm] \in [/mm] N und alle [mm] a_{1} [/mm] ,...., [mm] a_{n} \in [/mm] K die Ungleichung
[mm] \vmat{ \summe_{k=1}^{n} a_{k} } \le \summe_{k=1}^{n} \vmat{ a_{k} }
[/mm]
gilt.
So nun habe ich mir überlegt, daß ja wenn n=0 die Summe = 0 also auch der Betrag = 0! Ebenso ist die n=0 für jeden Betrag aus [mm] a_{k} [/mm] =0!
Weiterhin habe ich überlegt, ob ich die Ungleichung über den Beweis der Dreiecksungleichung beweisen kann! Denn [mm] \vmat{a_{1}+a_{2}+...a_{n} } \le \vmat{ a_{1} } [/mm] + [mm] \vmat{ a_{2} } [/mm] usw! Und aufgrund der Rechenregeln eines Körpers kann ich ja (a1+a2)+an die Klammern weglassen, daher müßte die Dreiecksungleichung ja eigentlich auch für mehrere Summanden gelten als nur laut Definition für zwei Summanden oder lieg ich da falsch? Aber dann wäre ja die Aufgabe viel zu einfach!
Danke für Eure Hilfe
Lieben Gruß
Conny
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:34 Do 04.11.2004 | Autor: | Bastiane |
Hallo Conny!
Also, ich glaube, die Aufgabe ist wirklich nicht so schwierig, ich würde es mit der Dreiecksungleichung beweisen. Gibt es nicht so etwas wie eine verallgemeinerte Dreiecksungleichung, die genau das aussagt, was du da beweisen musst? Vielleicht findest du ja so etwas auch in einem Buch?
Sorry, ich bin mir da im Moment total unsicher, aber die Dreiecksungleichung gefiel mir in der Regel sehr gut.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:41 Do 04.11.2004 | Autor: | Marc |
Hallo conny,
> brauch mal wieder Euren Rat bei folgender Aufgabe:
> Es sei K ein angeordneter Körper. Zeigen Sie, daß für alle
> n [mm]\in[/mm] N und alle [mm]a_{1}[/mm] ,...., [mm]a_{n} \in[/mm] K die Ungleichung
>
>
> [mm]\vmat{ \summe_{k=1}^{n} a_{k} } \le \summe_{k=1}^{n} \vmat{ a_{k} }
[/mm]
>
>
> gilt.
>
> So nun habe ich mir überlegt, daß ja wenn n=0 die Summe = 0
> also auch der Betrag = 0! Ebenso ist die n=0 für jeden
> Betrag aus [mm]a_{k}[/mm] =0!
Okay?
> Weiterhin habe ich überlegt, ob ich die Ungleichung über
> den Beweis der Dreiecksungleichung beweisen kann! Denn
> [mm]\vmat{a_{1}+a_{2}+...a_{n} } \le \vmat{ a_{1} }[/mm] + [mm]\vmat{ a_{2} }[/mm]
Hmm, das ist doch gerade die Ungleichung, die du zeigen sollst (nur anders hingeschrieben)!
> usw! Und aufgrund der Rechenregeln eines Körpers kann ich
> ja (a1+a2)+an die Klammern weglassen, daher müßte die
> Dreiecksungleichung ja eigentlich auch für mehrere
> Summanden gelten als nur laut Definition für zwei Summanden
> oder lieg ich da falsch? Aber dann wäre ja die Aufgabe viel
> zu einfach!
Naja, so einfach ist sie nun auch nicht
Zunächst solltest du zeigen, dass überhaupt die Dreiecksungleichung [mm] $|x+y|\le|x|+|y|$ [/mm] in einem angeordneten Körper gilt (es sei natürlich denn, das darfst du voraussetzen).
Dann könntest/müßtest du die obige Ungleichung per Induktion für mehrere Summanden folgern. Aber einfach sagen: "Gilt bestimmt auch für mehrere Summanden" is' nich'
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 01:38 Do 04.11.2004 | Autor: | Cophidia |
Hey,
genau das ist ja mein Problem, ich weiß nie wirklich, was ich voraussetzen kann / darf und was nicht! Nur haben wir die Dreiecksungleichung für angeordnete Körper definiert für alle a,b [mm] \in [/mm] K, daher ging ich davon aus, ich darf sie voraussetzen! Aufgrund der Rechenregeln kann ich doch die Klammer weglassen also müßte doch [mm] \vmat{ a+b } [/mm] auch gelten bei
[mm] \vmat{ (a+b)+c } [/mm] etc also auch [mm] \vmat{ a+b+c }!
[/mm]
Hmmm wahrscheinlich habe ich wieder einen Denkfehler.
Danke Euch
Conny
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:56 Do 04.11.2004 | Autor: | Marc |
Hallo Conny,
> genau das ist ja mein Problem, ich weiß nie wirklich, was
> ich voraussetzen kann / darf und was nicht! Nur haben wir
> die Dreiecksungleichung für angeordnete Körper definiert
> für alle a,b [mm]\in[/mm] K, daher ging ich davon aus, ich darf sie
> voraussetzen!
Die Dreiecksungleichung wurde sicher nicht definiert, sie folgt aus den Axiomen für einen angeordneten Körper.
Wichtig ist dann auch die Feststellung, dass du nur die Dreiecksungleichung für 2 Summanden verwenden darft.
> Aufgrund der Rechenregeln kann ich doch die
> Klammer weglassen also müßte doch [mm]\vmat{ a+b }[/mm] auch gelten
Ich denke, es ist einfach nur mal wichtig, die Begriffe richtig zu verwenden.
Die Zeichenkette |a+b| stellt keine Aussage dar, von ihr kann also auch nicht gesagt werden, dass sie "gilt".
> bei
> [mm]\vmat{ (a+b)+c }[/mm] etc also auch [mm]\vmat{ a+b+c }!
[/mm]
Das sind alles keine Aussagen, deswegen weiß ich nicht, was du damit überhaupt ausdrücken willst.
Nochmal zur Gedankenordnung:
Du darfst verwenden, dass für zwei Elemente a, b eines angeordneten Körpers gilt:
[mm] $|a_1+a_2|\le |a_1|+|a_2|$
[/mm]
Die Frage ist nun, kann man eine ähnliche Ungleichung auch für mehrere Summanden aufstellen, gilt also auch die Aussage
[mm] $|a_1+a_2+\ldots+a_n|\le|a_1|+|a_2|+\ldots+|a_n|$?
[/mm]
Als kleine Übung könntest du doch mal den Fall n=3 aus der Dreiecksungleichung folgern, also:
[mm] $|a_1+a_2+a_3|\le|a_1|+|a_2|+|a_3|$
[/mm]
Die Folgerung diese Ungleichung aus der Dreieckesungleichung führe uns doch mal vor. In ihr steckt dann bereits die dieselben Methoden, die du auch im allgemeinen Fall für den Induktionsschritt benötigst, ist also keineswegs eine Übungsaufgabe nur für uns
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 02:21 Do 04.11.2004 | Autor: | Cophidia |
Hey Marc,
also ich hätte das jetzt so bewiesen:
Teil1: [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + [mm] a_{3} \ge [/mm] 0
da gilt: [mm] a_{1} \le \vmat{ a_{1} } [/mm] und [mm] a_{2} \le \vmat{ a_{2} } [/mm] und [mm] a_{3} \le \vmat{ a_{3} } [/mm] folgt [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + [mm] a_{3} \le \vmat{ a_{1} } [/mm] + [mm] a_{2} [/mm] + [mm] a_{3} \le \vmat{ a_{1} } [/mm] + [mm] \vmat{ a_{2} } [/mm] + [mm] a_{3} \le \vmat{ a_{1} } [/mm] + [mm] \vmat{ a_{2} } [/mm] + [mm] \vmat{ a_{3} }
[/mm]
Teil2: [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + [mm] a_{3} [/mm] < 0
da gilt -( [mm] a_{1} [/mm] + [mm] a_{2} [/mm] + [mm] a_{3} [/mm] ) = - [mm] a_{1} [/mm] - [mm] a_{2} [/mm] - [mm] a_{3}
[/mm]
wiederum ist - [mm] a_{1} \le \vmat{ - a_{1} } [/mm] und so weiter
also folgt - [mm] a_{1} [/mm] + ..... [mm] \le \vmat{ a_{1} } [/mm] + ..... (wie Teil1)
LG Conny
|
|
|
|
|
Hallo Cornelia,
jetzt machst du es dir aber unnötig schwer, denn du müsstest ja alle Vorzeichenkombinationen durchprüfen.
Du warst im Laufe der Diskussion fast schon mal auf dem Weg, den Marc dir zeigen will.
Du möchtest von [mm]|a+b+c|[/mm] nach [mm]|a|+|b|+|c|[/mm].
Mit dem 'Trick' [mm]a+b+c=(a+b)+c[/mm], der in jedem Körper gilt (Warum? Wie heißt er?), kannst du eine Summe von drei Zahlen umformen in zwei hintereinander geschaltete Summen von je zwei Zahlen. Für Summen von zwei Zahlen gilt die Dreiecksungleichung.
Damit du nicht völlig verzweifelst, schreib ich dir auf, wie es für drei Zahlen geht. Das ist aber, wie Marc schon gesagt hat, immer noch kein Beweis für n Zahlen.
[mm]|a+b+c|=|(a+b)+c|\le|a+b|+|c|\le|a|+|b|+|c|[/mm].
Du musst also Pluszeichen für Pluszeichen nacheinander mit der Dreiecksungleichung aus dem großen Betrag rausziehen.
|
|
|
|