www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung beweisen
Ungleichung beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 11.10.2006
Autor: Limeswissengeg0

Aufgabe
Beweisen Sie, dass für alle n [mm] \in \IN [/mm] gilt:
n! [mm] \le 2*(\bruch{n}{2})^n [/mm]

Hallo!Hier also mein Problem(chen):

Wir sollen das mit Induktion beweisen.
Mein Anfang: n=1
Ist einfach, setzt man ein und es ist eine wahre Aussage (1=1).
Nun nehme ich an, dass das für alle n gilt.
Jetzt muss ich noch zeigen, dass das für n+1 gilt.
Also einsetzen:
(n+1)! [mm] \le 2*(\bruch{n+1}{2})^{n+1} [/mm]
nach Definition ist (n+1)! = n!*(n+1)
[mm] 2*(\bruch{n+1}{2})^{n+1} [/mm] = [mm] 2*(\bruch{n+1}{2})^{n}*(\bruch{n+1}{2}) [/mm]
= [mm] (\bruch{n+1}{2})^{n}*(n+1) [/mm]
also könnte ich jetzt schreiben:
n!*(n+1) [mm] \le (\bruch{n+1}{2})^{n}*(n+1) [/mm]
wenn ich jetzt auf beiden Seiten der Ungleichung (n+1) dividiere, bekomme ich:
n! [mm] \le (\bruch{n+1}{2})^{n} [/mm]
und an dieser Stelle komme ich nicht weiter, hab mich sicher irgendwo eher verrannt.
Ich bitte Euch einfach mal um einen Tipp oder Hinweis, muss (darf!) nicht gleich die ganze Lösung sein.
Danke!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Fr 13.10.2006
Autor: mathemaduenn

Hallo limes,
Bisher richtig bleibt noch zu zeigen
[mm] $2*(\bruch{n}{2})^{n}\le (\bruch{n+1}{2})^{n}$ [/mm]
oder
[mm] $2*n^n \le (n+1)^n$ [/mm]
Als Tipp MBBinomischer Lehrsatz
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]