www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Ungleichung Matrizenprodukt
Ungleichung Matrizenprodukt < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Matrizenprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Do 14.10.2010
Autor: papillon

Aufgabe
Zeigen Sie dass für die Matrix $A>0$ und die Vektoren $x$ und $y(t)$ mit $|y(t)| [mm] \le [/mm] k [mm] \ctimes [/mm] |t|$ die Abschätzung

[mm] $|2x^T [/mm] A y(t)| [mm] \le x^T [/mm] A x + [mm] y(t)^T [/mm] A y(t) [mm] \le x^T [/mm] A x + 2 [mm] \parallel [/mm] A [mm] \parallel [/mm] ( [mm] k^2 \ctimes |t|^2)$ [/mm]

gilt, wobei [mm] \parallel [/mm] A [mm] \parallel [/mm] die induzierte 2-norm der Matrix A darstellt.


Hallo,

leider gelingt es mir nicht, diese Abschätzung zu beweisen. Ich kann zeigen, dass gilt

[mm] $-2x^T [/mm] A y(t) [mm] \le x^T [/mm] A x + [mm] y(t)^T [/mm] A y(t)$,

indem ich einfach das Produkt

[mm] $\pmat{x^TP & y^T} \pmat{P^-1 & I \\ I & P} \pmat{P^Tx\\y}\ge0$ [/mm]
mit  [mm] $\pmat{P^{-1} & I \\ I & P}\ge [/mm] 0$ auswerte. Aber damit ist der erste Teil der zu beweisenden Ungleichung ja noch nicht gezeigt, und außerdem bleibt noch der zweite Teil zu beweisen. Hat da jemand eine Idee?

Vielen Dank schonmal!

        
Bezug
Ungleichung Matrizenprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 15.10.2010
Autor: rainerS

Hallo!

> Zeigen Sie dass für die Matrix [mm]A>0[/mm] und die Vektoren [mm]x[/mm] und
> [mm]y(t)[/mm] mit [mm]|y(t)| \le k \ctimes |t|[/mm] die Abschätzung
>  
> [mm]|2x^T A y(t)| \le x^T A x + y(t)^T A y(t) \le x^T A x + 2 \parallel A \parallel ( k^2 \ctimes |t|^2)[/mm]
>  
> gilt, wobei [mm]\parallel[/mm] A [mm]\parallel[/mm] die induzierte 2-norm der
> Matrix A darstellt.
>  
> Hallo,
>  
> leider gelingt es mir nicht, diese Abschätzung zu
> beweisen. Ich kann zeigen, dass gilt
>  
> [mm]-2x^T A y(t) \le x^T A x + y(t)^T A y(t)[/mm],
>  
> indem ich einfach das Produkt
>
> [mm]\pmat{x^TP & y^T} \pmat{P^-1 & I \\ I & P} \pmat{P^Tx\\y}\ge0[/mm]
>  
> mit  [mm]\pmat{P^{-1} & I \\ I & P}\ge 0[/mm] auswerte. Aber damit
> ist der erste Teil der zu beweisenden Ungleichung ja noch
> nicht gezeigt, und außerdem bleibt noch der zweite Teil zu
> beweisen. Hat da jemand eine Idee?

Was bedeutet denn $A>0$? Positiv definit? Wenn ja:

Die zweite Ungleichung ist ja im wesentlichen $ [mm] y(t)^T [/mm] A [mm] y(t)\le [/mm] 2 [mm] \parallel [/mm] A [mm] \parallel [/mm] ( [mm] k^2 \ctimes |t|^2)$, [/mm] das sollte recht einfach aus der Definition der Matrixnorm folgen.

Und für die erste Ungleichung würde ich

[mm](x+y(t))^TA(x+y(t)) [/mm]

anschauen. Wenn A positiv definit ist, ist dies ja immer [mm] $\ge [/mm] 0$.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]