www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung (Gewichteter) Mit.
Ungleichung (Gewichteter) Mit. < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung (Gewichteter) Mit.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:52 Do 15.01.2015
Autor: UniversellesObjekt

Aufgabe
Es sei [mm] $n\in\IN_{>0}$ [/mm] und [mm] $x=(x_1,\dots,x_n)\in\IR_{>0}^n$. [/mm]

a) Es sei [mm] $g(x_1,\dots,x_n)=\sqrt[n]{\prod x_j}$ [/mm] und [mm] $a(x_1,\dots,x_n)=1/n(\sum x_j)$. [/mm] Man zeige [mm] $g(x_1,\dots,x_n)\le a(x_1,\dots,x_n)$. [/mm]

b) Für [mm] $\alpha\in\IN_{>0}^n$ [/mm] sei [mm] $x\bullet\alpha=\sum x_j\alpha_j$, $x^\alpha=\prod x_j^{\alpha_j}$ [/mm] und [mm] $|\alpha|=\sum\alpha_j$. [/mm] Man zeige [mm] $\sqrt[|\alpha|]{x^\alpha}\le(x\bullet\alpha)/|\alpha|$. [/mm]




Hallo zusammen,

Zur a) habe ich mir folgende Gedanken gemacht: Zunächst möchte ich die Aussage für alle Zweierpotenzen $n$ zeigen. Für $n=1$ ist es trivial, für $n=2$ muss ich [mm] $\sqrt{ab}\le [/mm] (a+b)/2$ zeigen, das ist äquivalent zu [mm] $4ab\le a^2+2ab+b^2$, [/mm] also [mm] $0\le (a-b)^2$. [/mm]

Es gilt [mm] $g(x_1,\dots,x_{2n})=g(g(x_1,\dots,x_n),g(x_{n+1},\dots,x_{2n}))$, [/mm] und analog für $a(x)$, das kann man sich leicht überlegen. Per Induktion kann man die Aussage für Zweierpotenzen folgern.

Für festes $n$ gilt nun [mm] $g(x_1,\dots,x_n)=g(x_1,\dots,x_n,g(x_1,\dots,x_n))$ [/mm] und analog für $a$. Das heißt aus der Aussage für $n+1$ würde die Aussage für $n$ folgen. Indem ich diesen Schritt wiederhole, bis ich bei einer Zweierpotenz ankomme, folgt die Aussage.

(Falls gewünscht, kann ich das noch etwas genauer ausführen.)

Bei der b) habe ich hingegen keine Ideen. Lässt sich mein Beweis übertragen? Oder benötige ich eine völlig neue Idee?

Vielen Dank und Liebe Grüße,
UniversellesObjekt

        
Bezug
Ungleichung (Gewichteter) Mit.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Do 15.01.2015
Autor: UniversellesObjekt

Oh, das war doof... Ich kann das ja einfach auf die a) zurückführen, indem ich [mm] g(\underbrace{x_1,\dots,x_1}_{\alpha_1\text{ mal}},\dots,\underbrace{x_n,\dots,x_n}_{\alpha_n\text{ mal}}) [/mm] betrachte. Ich glaube, das Thema kann geschlossen werden.

Edit: Eine interessante Frage wäre höchstens noch, wie es aussieht, wenn man für [mm] $\alpha_j$ [/mm] auch nicht-natürliche Zahlen zulässt.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Ungleichung (Gewichteter) Mit.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 17.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]