www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Ungleichung Beweis
Ungleichung Beweis < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 28.04.2010
Autor: seamus321

Aufgabe
Zeigen sie: Ist [mm] p_{n}\in\Pi_{n} [/mm] das Interpolationspolinom zu den Daten [mm] (x_{i}, f(x_{i})), [/mm] i= 0,...,n mit äquidistanten Stützstellen [mm] x_{i}=a+ih [/mm] i=0,..,n h:= (b-a)/n  so gelten die Abschätzungen

[mm] \parallel f-p_{n}\parallel_{\infty} \le \bruch{\parallel f^{n+1} \parallel_{\infty}}{4(n+1)} *h^{n+1} [/mm]

[mm] \parallel f'-p'_{n}\parallel_{\infty} \le \parallel f^{n+1} \parallel_{\infty} *h^{n} [/mm]

Also nach meinen Skript gilt erstmal die allgemeine Fehlerabschätzung

[mm] \parallel f-p_{n}\parallel_{\infty} \le \bruch{\parallel f^{n+1} \parallel}{(n+1)!}*\parallel w_{n+1} \parallel [/mm]

wobei [mm] w_{n+1} [/mm] das Knotenpolynom ist mit [mm] w_{n+1}(x)= \produkt_{i=0}^{n} [/mm] x- [mm] x_{i} [/mm]

Das vereinfacht mir die ganze Problematik erstmal da ich ja nur noch [mm] w_{n+1}(x) [/mm] "schön" abschätzen muss um die Richtigkeit der ersten Ungleichung zu zeigen.

Das Vereinfachen bzw abschätzen davon fällt mir aber irgendwie schwer...

hier mein Ansatz
[mm] w_{n+1}(x)=\produkt_{i=1}^{n} x-x_{i}=(x-a)*(x-(a+h))*(x-(a+2h))*...*(x-(a+(n-1)h))*(x-b) [/mm]
leider sehe ich noch keine weiter sinnvolle Abschätzung oder Umformung. Kann mir jemand helfen?

Grüße Seamus

edit: erste Fehlerabschätzung geändert

        
Bezug
Ungleichung Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Do 29.04.2010
Autor: rainerS

Hallo!

> Zeigen sie: Ist [mm]p_{n} \in \Pi_{n}[/mm] das Interpolationspolinom
> zu den Daten [mm](x_{i}, f(x_{i})),[/mm] i= 0,...,n mit
> äquidistanten Stützstellen [mm]x_{i}=a+ih[/mm] i=0,..,n h:=
> (b-a)/n  so gelten die Abschätzungen
>  
> [mm]\parallel f-p_{n}\parallel_{infty} \le \bruch{\parallel f^{n+1} \parallel_{infty}}{4(n+1)} *h^{n+1}[/mm]
>  
> [mm]\parallel f'-p'_{n}\parallel_{infty} \le \parallel f^{n+1} \parallel_{infty} *h^{n}[/mm]
>  
> Also nach meinen Skript gilt erstmal die allgemeine
> Fehlerabschätzung
>  
> [mm]\parallel f-p_{n}\parallel_{infty} \le \bruch{\parallel f^{n+1} \parallel}{(n+1)!}*\parallel w_{n+1} \parallel[/mm]
>
> wobei [mm]w_{n+1}[/mm] das Knotenpolynom ist mit [mm]w_{n+1}(x)= \produkt_{i=0}^{n}[/mm]
> x- [mm]x_{i}[/mm]
>  
> Das vereinfacht mir die ganze Problematik erstmal da ich ja
> nur noch [mm]w_{n+1}(x)[/mm] "schön" abschätzen muss um die
> Richtigkeit der ersten Ungleichung zu zeigen.
>  
> Das Vereinfachen bzw abschätzen davon fällt mir aber
> irgendwie schwer...
>  
> hier mein Ansatz
>  [mm]w_{n+1}(x)= \produkt_{i=1}^{n} x-x_{i}[/mm] =
> (x-a)*(x-(a+h))*(x-(a+2h))*...*(x-(a+(n-1)h))*(x-b)
>  leider sehe ich noch keine weiter sinnvolle Abschätzung
> oder Umformung. Kann mir jemand helfen?

Tipp: nimm zum Beispiel an, dass x zwischen den ersten beiden Stützstellen $a$ und $a+h$ liegt. Dann ist

[mm] |x-a| \le h [/mm], [mm] |x-(a+h)| \le h [/mm], [mm] |x-(a+2h)| \le 2h [/mm], [mm] |x-(a+3h)| \le 3h [/mm], usw.

Was kannst du daraus für das Knotenpolynom folgern?

Viele Grüße
   Rainer

Bezug
                
Bezug
Ungleichung Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:10 Do 29.04.2010
Autor: seamus321

Ok, das macht Sinn!

Dann könnte ich [mm] w_{n+1} \le h^{n+1}*n! [/mm] abschätzen wenn ich das richtig sehe.

Dann fehlt mir aber noch das [mm] \bruch{1}{4} [/mm] aus der zu beweisenden Ungleichung. Wo bekomme ich die denn her, es ist ja schon alles vereinfacht...

Grüße Seamus
und danke für den Lichtblick ;-)

Bezug
                        
Bezug
Ungleichung Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Sa 01.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]