www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:45 So 03.06.2012
Autor: katrin10

Aufgabe
Sei [mm] $f:\IR\to\IR$ [/mm] eine konvexe Funktion, [mm] $(\Omega,F,\mu)$ [/mm] ein Maßraum, $g$ [mm] $\mu$-integrierbar, [/mm] $f [mm] \circ [/mm] g$ [mm] $\mu$-integrierbar [/mm] und [mm] $\mu(\Omega)=1$. [/mm] Dann gilt [mm] $f(\int_{} \! [/mm] g [mm] \, d\mu )\le\int_{} \! [/mm] f [mm] \circ [/mm] g [mm] \, d\mu$ [/mm]



Hallo,

ich habe gezeigt, dass die Behauptung für [mm] \mu-integrierbare [/mm] nicht negative Funktionen gilt, also insbesondere für g^+ und g^- (g^+ soll der Positivteil, also max(g,0) sein, g^- der Negativteil von g), d. h. es gilt [mm] f(\int_{} \! [/mm] g^+ [mm] \, d\mu )<=\int_{} \! [/mm] f [mm] \circ [/mm] g^+ [mm] \, d\mu [/mm] und [mm] f(\int_{} \! [/mm] g^- [mm] \, d\mu )<=\int_{} \! [/mm] f [mm] \circ [/mm] g^- [mm] \, d\mu [/mm] und g=g^+ - g^-. Jetzt fehlt noch, dass [mm] f(\int_{} \! [/mm] g^+ - [mm] g^-\, d\mu )<=\int_{} \! [/mm] f [mm] \circ [/mm] (g^+ - [mm] g^-)\, d\mu [/mm] gilt. Dass f konvex, könnte dafür wichtig sein, leider komme ich jedoch nicht weiter.

Vielen Dank.

        
Bezug
Ungleichung: Konvexität
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 So 03.06.2012
Autor: wieschoo

verpennt
Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 03.06.2012
Autor: katrin10

Warum gilt dies für konvexe Funktionen? Wie kann ich mir konvexe Funktionen vorstellen?


Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Mo 04.06.2012
Autor: meili

Hallo,
> Warum gilt dies für konvexe Funktionen? Wie kann ich mir
> konvexe Funktionen vorstellen?
>  

Siehe []konvexe Funktionen

Gruß
meili

Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Mo 04.06.2012
Autor: fred97


> Naja da f konvex ist hast du doch [mm]f(a+b)\le f(a)+f(b)[/mm] als
> Ungleichung.

Nein. Das ist z.B. für [mm] f(x)=x^2 [/mm] falsch.

     [mm] f(a+b)=a^2+2ab+b^2, f(a)+f(b)=a^2+b^2 [/mm]

Ist f konvex, so gilt:     [mm] f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2} [/mm]


Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Mo 04.06.2012
Autor: wieschoo

Stimmt da habe ich total gepennt. Ich zieh alles zurück.

Bezug
                        
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 04.06.2012
Autor: katrin10

Wie könnte man die Aufgabe sonst lösen?

Bezug
                                
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Di 05.06.2012
Autor: schachuzipus

Hallo,


> Wie könnte man die Aufgabe sonst lösen?

Einfach mal nach "Jensen'sche Ungleichung" suchen und einen der zahlreich im Netz vorhandenen Beweise angucken.

Etwa hier

http://www.math.uni-kiel.de/stochastik/roesler/vorlesung/mass/Mass.pdf

auf Seite 39, Satz 45 ...

Gruß

schachuzipus


Bezug
        
Bezug
Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 05.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]