www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 13.11.2016
Autor: Fry

Hallo zusammen!

Ich möchte zeigen, dass gilt:
[mm]\sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le 0,5 [/mm]  für alle [mm] $n\ge [/mm] 13$.


Hätte jemand da einen Tipp für mich?
Hatte erst überlegt, die Summe jeweils zweier Summanden abzuschätzen, aber da komme ich nicht weiter.
LG
Fry

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 13.11.2016
Autor: abakus

Ich bin mir sicher, dass die Behauptung falsch ist.
Die hintere Klammer nimmt Werte an, die kleiner als 1 sind. Wenn man das mit einem hinreichend großem n potenziert, geht diese Potenz gegen Null.
Somit wird NICHT für jedes n der Summenwert 0,5 überschritten.

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Mo 14.11.2016
Autor: Fry

Hallo Abakus,

du hast vollkommen Recht, mir ist beim Aufschreiben ein Fehler unterlaufen, es muss "kleiner gleich" 1/2 heißen.

Hätte jemand eine Idee?
Vg
Fry

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

[mm] $\left(1-\frac{k}{6}\right)^n$ [/mm] ist offensichtlich fallend in $n$, da [mm] $\left(1-\frac{k}{6}\right) \le [/mm] 1$ für [mm] $k\in\{1,\ldots,6\}$. [/mm]

Daraus folgt: $ [mm] \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^{13} [/mm] = [mm] \frac{459299}{944784} [/mm] < 0.5$

Gruß,
Gono


Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Mo 14.11.2016
Autor: Fry

Hey Gono,

vielen Dank für deine Antwort! :)
Was mich noch irritiert ist, dass man diese Abschätzung so machen kann, da ja das Vorzeichen der Summanden alterniert.

VG
Fry

Bezug
                                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

kann man auch gar nicht, das hab ich schlichtweg übersehen :-)
Ich such mal eine neue Möglichkeit.

Gruß,
Gono

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Mo 14.11.2016
Autor: Gonozal_IX

Hiho,

es geht fast doch so einfach :-)
Man schätzt [mm] $\left(1-\frac{k}{6}\right)^n$ [/mm] in den positiven Summanden nach oben durch [mm] $\left(1-\frac{k}{6}\right)^{14}$ [/mm] und in den negativen nach unten durch 0 ab und erhält:

$ [mm] \sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^n\le \vektor{6 \\ 1} \left(1-\frac{k}{6}\right)^{14} [/mm] - 0 +  [mm] \vektor{6 \\ 3} \left(1-\frac{3}{6}\right)^{14} [/mm] - 0 + [mm] \vektor{6 \\ 5} \left(1-\frac{5}{6}\right)^{14} [/mm] - 0 = [mm] \frac{764932357}{1632586752} [/mm] < 0.5$

Nebenbei: Der letzte Summand für $k=6$ ist sowieso $0$ wegen [mm] $\left(1-\frac{6}{6}\right) [/mm] = 0$

D.h. man hat die Ungleichung für [mm] $n\ge [/mm] 14$ gezeigt.
Für $n=13$ rechnet man wie vorhin einfach nach:

[mm] $\sum_{k=1}^{6}(-1)^{k+1} \vektor{6 \\ k}\left(1-\frac{k}{6}\right)^{13} [/mm] = [mm] \frac{459299}{944784} [/mm] < 0.5 $

D.h. die Ungleichung gilt für $n [mm] \ge [/mm] 13$.

Gruß,
Gono

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mo 14.11.2016
Autor: Fry

Stimmt :)
Ach super,
vielen Dank für deine Hilfe! :)

LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]