www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Unendlickeitsverhalten
Unendlickeitsverhalten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendlickeitsverhalten: Untersuchung -Frage
Status: (Frage) beantwortet Status 
Datum: 22:04 Do 18.05.2006
Autor: Desperado

Hallo,

leider hab ich vergessen wie ich das Unendlichkeitsverhalten einer Gebrochenrationalen Funktion prüfe.

f(x)= 5x-7 / [mm] x^2-3x+2 [/mm]

dann habe ich die die x mit den höhsten exponenten ausgeklammert :

=> x* ( 1+ 5/x - 7/x) [mm] /x^2* [/mm] (1- [mm] 3x/x^2 [/mm] + [mm] 2/x^2 [/mm] )

stimmt das so?

und jetzt muss ich die Werte

lim f(x)
x ->  unendlich

und für - unendlich bilden.

dazu habe ich die Frage.Wenn ich jetzt die Werte einsetze,muss ich die gesamte funktion betrachten oder nur in den Zähler oder Nenner einsetzen und ausrechen?

Danke im vorraus


Gruß Desperado




        
Bezug
Unendlickeitsverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Do 18.05.2006
Autor: Fulla

hi desperado!

[mm] f(x)=\bruch{5x-7}{x²-3x+2}=\bruch{x(5-\bruch{7}{x})}{x²(1-\bruch{3}{x}+\bruch{2}{x²})} [/mm]

das ist richtig (du hast aber einen fehler beim ausklammern im zähler gemacht...)

um jetzt [mm] \limes_{x\rightarrow\infty}f(x) [/mm] zu berechnen, schaust du dir die einzelnen terme an (alles mit x im nenner geht gegen null)
-->  [mm] \limes_{x\rightarrow\infty}f(x)=\limes_{x\rightarrow\infty}\bruch{5x}{x²}=\limes_{x\rightarrow\infty}\bruch{5}{x}=0 [/mm]

du musst also schon den ganzen bruch betrachten...


lieben gruß,
Fulla

Bezug
        
Bezug
Unendlickeitsverhalten: überall höchste Potenz
Status: (Antwort) fertig Status 
Datum: 09:04 Fr 19.05.2006
Autor: Loddar

Guten Morgen Desperado!


Etwas einfacher wird es noch, wenn Du sowohl in Zähler als auch in Nenner die höchste auftretende $x_$-Potenz ausklammerst; hier also [mm] $x^2$ [/mm] :

$f(x) \ = \ [mm] \bruch{5x-7}{x^2-3x+2} [/mm] \ = \ [mm] \bruch{x^2*\left(\bruch{5}{x}-\bruch{7}{x^2}\right)}{x^2*\left(1-\bruch{3}{x}+\bruch{2}{x^2}\right)} [/mm] \ = \ [mm] \bruch{\bruch{5}{x}-\bruch{7}{x^2}}{1-\bruch{3}{x}+\bruch{2}{x^2}} [/mm] $


Und nun ergibt sich der Grenzwert auch sehr schnell:

[mm] $\limes_{x\rightarrow\pm\infty}\bruch{\bruch{5}{x}-\bruch{7}{x^2}}{1-\bruch{3}{x}+\bruch{2}{x^2}} [/mm] \ = \  [mm] \bruch{\pm 0-0}{1\mp 0+0} [/mm] \ = \ [mm] \bruch{0}{1} [/mm] \ = \ 0$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]