www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Uneigentliche Integrale
Uneigentliche Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Di 27.11.2007
Autor: Dipi

Hallo.

Es gibt ja uneigentliche Integrale mit unbeschränktem Intervall und mit unbeschränktem Integrandten nun wird ja in beiden Fällen wenn man dann den Grenzwert bildet meist eis, also Ober- bzw. Untersumme Null. Somit könnte ich ja z.B. nicht die Fläche von [mm] 1/x^2 [/mm] von x=0 bis unendlich auf einmal berechnen.

Also muss man dann z.B. bei x=1 nen cut machen und die Flächen einzeln berechnen?

        
Bezug
Uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 27.11.2007
Autor: Teufel

Hallo!

Ja, mach mal bei 1 den Cut :P Die uneigentliche Fläche von 1 an die sich bis ins unendliche nach Recht erstreckt hätte einen Flächeninhaltsgrenzwert von 1.

Aber wenn du die andere Fläche, also von 0 bis 1, berechnen willst, kommst du auf unendlich.
Kann ich mir so erklären, dass ja die eingeschobenen rechtecke unendliche Höhe annehmen, im Gegensatz zu den Rechtecken in der Unendlichkeit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]