www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 So 23.05.2010
Autor: niandis

Aufgabe
Bestimmen Sie das folgende unbestimmte Integral:
[mm] \integral sin^2xe^{-x} [/mm]

Hallo,

ich könnte einen Tipp zu diesem Integral brauchen!
Also ich denke, dass man hier substituieren muss, da bei der partiellen Integration ja immer der sin und das [mm] e^{-x} [/mm] in dem neuen Integral bleibt und man somit nicht weiter kommt! Leider habe ich keine Idee was ich hier substituieren soll. Denn weder wenn ich sin noch wenn ich e substituiere komm ich weiter! Hat einer von euch eine Idee wie das funktioniert?
Danke schonmal!

Liebe Grüße!

        
Bezug
Unbestimmtes Integral: partielle Integration
Status: (Antwort) fertig Status 
Datum: 21:00 So 23.05.2010
Autor: Loddar

Hallo niandis!


Du kommst hier nur mit partieller Integration weiter.

Wende anschließend [mm] $\cos^2(x) [/mm] \ = \ [mm] 1-\sin^2(x)$ [/mm] an.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]