www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Unbekannter Exponent
Unbekannter Exponent < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbekannter Exponent: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:38 Mo 07.03.2011
Autor: Manu1212

Aufgabe
[mm] \bruch{380000^x}{x} [/mm] = [mm] \bruch{3}{4} [/mm] * [mm] \bruch{400000^x}{x} [/mm] + [mm] \bruch{1}{4} [/mm] * [mm] \bruch{150000^x}{x} [/mm]

Hallo,

ich stehe vor dem oben geschriebenen Problem. Haben zwar schon mit dem Ln angefangen, aber wo nun auf beiden Seiten des = unbekannte Potenzen sind, komme ich nicht mehr weiter...

Erstmal würde ich alles mit x multiplizieren, also

[mm] 380000^x [/mm] = [mm] \bruch{3}{4} [/mm] * [mm] 400000^x [/mm] + [mm] \bruch{1}{4} [/mm] * [mm] 150000^x [/mm]

und nun?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unbekannter Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mo 07.03.2011
Autor: Al-Chwarizmi


> [mm]\bruch{380000^x}{x}\ =\ \bruch{3}{4}\ *\ \bruch{400000^x}{x}\ +\ \bruch{1}{4}\ *\ \bruch{150000^x}{x}[/mm]

>  Hallo,
>  
> ich stehe vor dem oben geschriebenen Problem. Haben zwar
> schon mit dem Ln angefangen, aber wo nun auf beiden Seiten
> des = unbekannte Potenzen sind, komme ich nicht mehr
> weiter...
>  
> Erstmal würde ich alles mit x multiplizieren, also
>  
> [mm]380000^x\ =\ \bruch{3}{4}\ *\ 400000^x\ +\ \bruch{1}{4}\ *\ 150000^x[/mm]
>  
> und nun?


Teile die Gleichung zum Beispiel durch  [mm] 10000^x [/mm] ,
um eine Gleichung mit kleineren Zahlen zu erhalten.
Ich würde auch noch alles mit 4 multiplizieren.

Allerdings sehe ich etwas schwarz für die nachfolgende
Lösung mittels Logarithmen. Bist du sicher, dass du
die Gleichung exakt richtig wiedergegeben hast ?

LG    Al-Chw.

Bezug
                
Bezug
Unbekannter Exponent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 07.03.2011
Autor: Manu1212

Ja, Gleich ist so richtig wiedergegeben.


Wenn nicht logarithmus, mit welchem Verfahren lässt sich das regeln?

Bezug
                        
Bezug
Unbekannter Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 07.03.2011
Autor: Al-Chwarizmi


> Ja, Gleichung ist so richtig wiedergegeben.
>  
>
> Wenn nicht Logarithmus, mit welchem Verfahren lässt sich
> das regeln?


Nur mittels eines Näherungsverfahrens.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]