www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Unbekannte im Exponent
Unbekannte im Exponent < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbekannte im Exponent: bitte Prüfen
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 22.04.2006
Autor: BeniMuller

Aufgabe
$16 \ * [mm] 2^{x+1} [/mm] \ - \ 5 \ * \ [mm] 6^{x}\ [/mm] = \ [mm] 2^{x} [/mm] \ + \ [mm] 6^{x-1}$ [/mm]

*nix rumgepostet*

Exponenten vereinheitlichen:

$16 \ * [mm] 2^{x+1} [/mm] \ = \ 32 \ * \ [mm] 2^{x}$ [/mm]

[mm] $6^{x-1} [/mm] \ = \ [mm] \bruch{1}{6} [/mm] \ * \ [mm] 6^{x}$ [/mm]

einsetzen:

$32 \ * [mm] 2^{x} [/mm] \ - \ [mm] 2^{x} [/mm] \ = \ 5 \ * \ [mm] 6^{x}\ +\bruch{1}{6} [/mm] \ * \ [mm] 6^{x}$ [/mm]

$31 \ * [mm] 2^{x} [/mm] \  = \ [mm] \bruch{31}{6} [/mm] \ * \ [mm] 6^{x}$ [/mm]

[mm] $2^{x} [/mm] \ = \ [mm] \bruch{1}{6} [/mm] \ * \ [mm] 2^{x} [/mm] \ * \ [mm] 3^{x}$ [/mm]

[mm] $3^{x} [/mm] \ = \ 6$

beidseitig logarithmieren:

$x \ * \ [mm] \lg [/mm] 3 \ = \ [mm] \lg [/mm] 6$

$x \ = [mm] \bruch{\lg 6}{\lg 3} [/mm] \ = \ 1.63993$

Bitte um Prüfung oder allfällige Variante.

Grüsse aus Zürich


        
Bezug
Unbekannte im Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Sa 22.04.2006
Autor: Superente

Hi,

ich habe eben die Aufgabe in mein CAS eingetippt und er hat mir genau dein Ergebniss ($ x \ = [mm] \bruch{\lg 6}{\lg 3}$) [/mm] ausgespuckt. Somit ist es richtig! ;)

Bezug
                
Bezug
Unbekannte im Exponent: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 Sa 22.04.2006
Autor: BeniMuller

Herzlichen Dank für Deine Prüfung.

Mein T-89 Titanium gab mir auch schon dieses Resultat. Mir geht es darum, zu verstehen, wie so etwas ausgerechnet wird. Ich möchte nicht vom Taschenrechner abhängig werden, obwohl er mir unschätzbare Dienste leistet, wie auch dieses Forum mir eine unschätzbare Hilfe ist.

Grüsse aus Zürich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]