www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Unabhängige Ereignisse
Unabhängige Ereignisse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängige Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 So 02.09.2012
Autor: Kuriger

Aufgabe
Die Elementarereignisse [mm] \Omega [/mm] = [mm] \{a,b,c,d,e,f,g,h\} [/mm] haben je die gleiche Wahrscheinlichkeit. Ausserdem seien die gfolgenden Ereignisse gegeben:
A = [mm] \{a,b,c,d\} [/mm]
B = [mm] \{d,f,g,h\} [/mm]
C = [mm] \{b,c,d,e\} [/mm]

a) berechnen Sie P(A [mm] \cap [/mm] B [mm] \cap [/mm] C )
b) berechnen Sie P(A) P(B) P(C)
c) Sind A, B und C unabhängig?


(A [mm] \cap [/mm] B [mm] \cap [/mm] C ) = [mm] \{d\} [/mm]
P(A [mm] \cap [/mm] B [mm] \cap [/mm] C ) = [mm] \bruch{1}{8} [/mm]

P(A) P(B) P(C) = [mm] \bruch{1}{2} [/mm] * [mm] \bruch{1}{2} [/mm] * [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{8} [/mm]


Da gilt:
P(A [mm] \cap [/mm] B [mm] \cap [/mm] C ) = P(A) P(B) P(C) = [mm] \bruch{1}{8}, [/mm] hätte ich gesagt, dass die Ereignisse unabhängig sind
Oder muss auch gelten:
P(A) P(B) = P(A [mm] \cap [/mm] B)
P(A) P(C) = P(A [mm] \cap [/mm] C)
P(B) P(C) = P(B [mm] \cap [/mm] C)

Dies würde ja nicht gelten, da
P(A) P(B) = P(A) P(C) = P(B) P(C)  = [mm] \bruch{1}{4} [/mm]
P(A [mm] \cap [/mm] B) = [mm] \bruch{1}{8} [/mm]
P(A [mm] \cap [/mm] C) = [mm] \bruch{3}{8} [/mm]
P(B [mm] \cap [/mm] C) = [mm] \bruch{1}{8} [/mm]

Vielen Dank




        
Bezug
Unabhängige Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Mo 03.09.2012
Autor: Diophant

Hallo Kuriger,

deine Rechnungen sind alle richtig, aber das war auch nicht deine Frage. Wie du []hier nachlesen kannst, muss bei mehr als zwei Ereignissen die Definition auch jeweils paarweise gelten. Somit war es richtig, dass du das auch gleich untersucht hast, und die Antwoprt lautet: A, B und C sind nicht stochastisch unabhängig.


Gruß, Diophant

Bezug
                
Bezug
Unabhängige Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Mo 03.09.2012
Autor: Kuriger

Hallo

oder wenn sie paarweise unabhängig sind, dann gilt so oder so auch:
P(A) * P(B) * P(C) = P (A [mm] \cap [/mm] B [mm] \cap [/mm] C)
Und umgekehrt?

Danke, gruss Kuriger

Bezug
                        
Bezug
Unabhängige Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 03.09.2012
Autor: Teufel

Hi!

Leider gilt das nicht. Für ein Beispiel, siehe []hier.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]