www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Technische Informatik" - Umrechnung:Dual in Hexadezimal
Umrechnung:Dual in Hexadezimal < Technische Inform. < Praktische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umrechnung:Dual in Hexadezimal: Beweis der Korrektheit
Status: (Frage) beantwortet Status 
Datum: 14:27 So 01.05.2005
Autor: wetterfrosch

Hallo,
ich weiß nicht wie ich die Korrektheit des Verfahrens bei der Umwandlung einer Dualzahl in eine Hexadezimalzahl beweisen soll.
Es waren die Schritte gegeben, deren Korrektheit nun bewiesen werden sollte:
1) Die Dualzahl wird- beim niederwertigsten Bit beginnend- in 4er-Blöcke aufgeteilt.
2)Besteht die Dualzahl aus einer nicht durch 4 teilbaren Anzahl von Bits, so wird vorne mit Nullen aufgefüllt, z.B. 11101 etwa wird  somit zu 00011101 und dann aufgeteilt in due Blöcke 0001 und 1101.
3) Abschließend wird jeder Block bestehend aus 4 Bits separat in seine Hexadezimal-Darstellung transformiert.
4) In der ursprünglichen Reihenfolge der Blöcke ergibt die Konkatenation dieser Transformationen die Hexadezimaldarstellung der Ausgangszahl.

Wie beweise ich nun die Korrektheit des Verfahrens? Ich hab keine Ahnung, wie man da vorgeht, ich kann das Verfahren anwenden,aber nicht beweisen. KAnn mir jmd, bitte bis spätestens heute Abend helfen?
Danke.
wetterfrosch

        
Bezug
Umrechnung:Dual in Hexadezimal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 01.05.2005
Autor: mathenix


> Hallo,
>  ich weiß nicht wie ich die Korrektheit des Verfahrens bei
> der Umwandlung einer Dualzahl in eine Hexadezimalzahl
> beweisen soll.
>  Es waren die Schritte gegeben, deren Korrektheit nun
> bewiesen werden sollte:
>  1) Die Dualzahl wird- beim niederwertigsten Bit beginnend-
> in 4er-Blöcke aufgeteilt.
>  2)Besteht die Dualzahl aus einer nicht durch 4 teilbaren
> Anzahl von Bits, so wird vorne mit Nullen aufgefüllt, z.B.
> 11101 etwa wird  somit zu 00011101 und dann aufgeteilt in
> due Blöcke 0001 und 1101.
>  3) Abschließend wird jeder Block bestehend aus 4 Bits
> separat in seine Hexadezimal-Darstellung transformiert.
>  4) In der ursprünglichen Reihenfolge der Blöcke ergibt die
> Konkatenation dieser Transformationen die
> Hexadezimaldarstellung der Ausgangszahl.
>  
> Wie beweise ich nun die Korrektheit des Verfahrens? Ich hab
> keine Ahnung, wie man da vorgeht, ich kann das Verfahren
> anwenden,aber nicht beweisen. KAnn mir jmd, bitte bis
> spätestens heute Abend helfen?
>  Danke.
>  wetterfrosch

Hallo,

also ich denke vollständige Induktion ist eine gute Wahl:
1. für 0: ok
2. n = n+1 sei  [mm] n_{4i+3} [/mm] ... [mm] n_{4i} n_{4i-1} [/mm] ... [mm] n_{3}... n_{0} [/mm]
mit [mm] n_{4i +3} [/mm] ... [mm] n_{4i} \not= [/mm] 1111 (Binärdarstellung; o.b.d.A.)
nun gibts zwei Fälle:
a) n+1 aendert nur die unteren Bits
b) n+1 setzt die unteren  [mm] n_{4i-1} [/mm] ... [mm] n_{3}... n_{0} [/mm] Bits auf Null
und [mm] n_{4i +3} [/mm] ... [mm] n_{4i} [/mm] wird um eins erhöht

Man zeige, dass für beide Fälle das Verfahren korrekt ist; fertig

.. ich geb zu das ist nur eine grobe Skizze, aber vielleicht hilfts.

Gruß,

mathenix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]