www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Umlaufzahl berechnen
Umlaufzahl berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umlaufzahl berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 29.06.2010
Autor: steppenhahn

Aufgabe
Berechne die Umlaufzahl [mm] $\xi(C,1)$ [/mm] (d.h. wie oft umläuft die Kurve C den Punkt z=1) mit $C(t) = [mm] \frac{\sqrt{2}*\cos(t)*(1+i*\sin(t))}{1+sin^{2}(t)}$ [/mm] mit [mm] $t\in[0,2\pi]$. [/mm]

Hallo!

Bei der obigen Aufgabe komme ich irgendwie nicht weiter. Es geht um's berechnen, d.h. ich darf nicht einfach eine Zeichnung machen und die Zahl so herausfinden.
Die Definition der Umlaufzahl ist:

[mm] $\xi(C,1):=\frac{1}{2*\pi*i}*\int_{C}\frac{1}{w-1}\ [/mm] dw = [mm] \int_{0}^{2*\pi}\frac{\phi'(t)}{\phi(t)-1}\ [/mm] dt$.

Allerdings kommt da ja ein Monster-Term raus, wenn ich wirklich die Kurve einsetze, und man kann da auch nicht viel kürzen. Uns wurde der Tipp gegeben, dass man sowas wie den Cauchy'schen Integralsatz nochmal auspacken könnte, aber ich sehe nicht, wo das hier passt.

Was mir aufgefallen ist: Ich brauche im Grunde im Wegintegral ja nur den Imaginärteil zu beachten, der Realteil muss ja verschwinden, weil als Ergebnis eine ganze Zahl herauskommen soll. Das hat mir aber auch nicht weitergeholfen.

Ich bitte um einen Tipp!

Vielen Dank!
Grüße,
Stefan

        
Bezug
Umlaufzahl berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mi 30.06.2010
Autor: zorin

Man kann sich überlegen (berechnen), wie sich die Windungszahl ändert, wenn man die Kurve kreuzt. Weit draußen ist die Windungszahl 0. Hier bietet sich an, sich auf der reellen Achse von rechts der 1 zu nähern.
Also wann/wo schneidet die Kurve die reelle Achse bzw. wann ist der Imaginärteil 0? Und mit welcher Orientierung (oder Vorzeichen) schneidet die Kurve z.B. den Punkt [mm] \wurzel{2} [/mm] (von wo nach wo)?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]