www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Umklammern?
Umklammern? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umklammern?: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:58 Mo 11.08.2008
Autor: mighttower2

Aufgabe
Bestimmen Sie Entwicklungspunkt und Konvergenzradius.
[mm]\summe_{n=0}^{\infty} n^3(x-2)^n[/mm]

Hallo mein Problem liegt bei einer Umformung um den Konvergenzradius rauszubekommen hier mal kurz die Musterlösung zu dem Teil:
[mm] \left| \bruch{a_{n+1}}{a_n} \right|=\bruch{(n+1)^3}{n^3}=\bruch{n^3(1+\bruch{1}{n})^3}{n^3}=(1+\bruch{1}{n})^3 =1[/mm]

Mein Problem liegt im Schritt:
[mm]\bruch{(n+1)^3}{n^3}=\bruch{n^3(1+\bruch{1}{n})^3}{n_3[/mm]

Gibts da ein Gesetz oder eine Formel mit der man das einfach herleiten kann?
Ich hab den ersten Term einfach mal ausgerechnet und komme auf:
[mm]\bruch{n^3+3n^2+3n+1}{n^3}[/mm]
Aber auch hier erschließt sich mir nicht direkt wie man dann auf die Umformung kommt auch wenn sie natürlich stimmt.
Vielen Dank
Gruß
Marc

Ich habe die Frage in keinem anderem Forum gestellt.

        
Bezug
Umklammern?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mo 11.08.2008
Autor: schachuzipus

Hallo Marc,

> Bestimmen Sie Entwicklungspunkt und Konvergenzradius.
>  [mm]\summe_{n=0}^{\infty} n^3(x-2)^n[/mm]
>  Hallo mein Problem liegt
> bei einer Umformung um den Konvergenzradius rauszubekommen
> hier mal kurz die Musterlösung zu dem Teil:
>  [mm]\left| \bruch{a_{n+1}}{a_n} \right|=\bruch{(n+1)^3}{n^3}=\bruch{n^3(1+\bruch{1}{n})^3}{n^3}=(1+\bruch{1}{n})^3 =1[/mm]
>  
> Mein Problem liegt im Schritt:
>  [mm]\bruch{(n+1)^3}{n^3}=\bruch{n^3(1+\bruch{1}{n})^3}{n_3[/mm]
>  
> Gibts da ein Gesetz oder eine Formel mit der man das
> einfach herleiten kann?

Da wird in der Klammer vor dem Potenzieren n ausgeklammert:

[mm] $(n+1)^3=\left[n\cdot{}\left(1+\frac{1}{n}\right)\right]^3=n^3\cdot{}\left(1+\frac{1}{n}\right)^3$ [/mm] ....

>  Ich hab den ersten Term einfach mal ausgerechnet und komme
> auf:
>  [mm]\bruch{n^3+3n^2+3n+1}{n^3}[/mm]
>  Aber auch hier erschließt sich mir nicht direkt wie man
> dann auf die Umformung kommt auch wenn sie natürlich
> stimmt.
>  Vielen Dank
>  Gruß
>  Marc
>  
> Ich habe die Frage in keinem anderem Forum gestellt.


LG

schachuzipus

Bezug
                
Bezug
Umklammern?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Mo 11.08.2008
Autor: mighttower2

Au na klar.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]