www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Umkehrfunktionen und Monotonie
Umkehrfunktionen und Monotonie < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen und Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Fr 27.01.2012
Autor: del1r1um

Aufgabe
[mm] $f(x)=\sqrt{\frac{5x-12}{x-3}}$ [/mm]
Untersuchen Sie die Funktion auf Monotonie. Wie (lauten) dann die Umkehrfunktion(en)?

Hallo,
Ich kenne Monotonieuntersuchungen eigentlich so, dass ich die Ableitung bilde und dann deren Nullpunkte berechne. Danach prüfe ich an je einem beliebigen Punkt links und rechts jeder Nullstelle, ob diese Punkte positiv oder negativ sind.  Dann weiß ich, wo Hoch-, Tief- und Sattelpunkte sind und daraus kann ich dann auch ableiten, wie das Monotonieverhalten ist.

Nun funktioniert das Verfahren hier nicht wirklich gut, da $f(x)$ auf [mm] $\frac{12}{5} Wie geht das?
Habe mit Google nichts aussagekräftiges gefunden.

        
Bezug
Umkehrfunktionen und Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 27.01.2012
Autor: Al-Chwarizmi


> [mm]f(x)=\sqrt{\frac{5x-12}{x-3}}[/mm]
>  Untersuchen Sie die Funktion auf Monotonie. Wie (lauten)
> dann die Umkehrfunktion(en)?
>  Hallo,
>  Ich kenne Monotonieuntersuchungen eigentlich so, dass ich
> die Ableitung bilde und dann deren Nullpunkte berechne.
> Danach prüfe ich an je einem beliebigen Punkt links und
> rechts jeder Nullstelle, ob diese Punkte positiv oder
> negativ sind.  Dann weiß ich, wo Hoch-, Tief- und
> Sattelpunkte sind und daraus kann ich dann auch ableiten,
> wie das Monotonieverhalten ist.
>  
> Nun funktioniert das Verfahren hier nicht wirklich gut, da
> [mm]f(x)[/mm] auf [mm]\frac{12}{5}
> soll ich die Umkehrfunktion angeben, scheinbar gibt es ein
> Verfahren, dass mir diese mitliefern würde.
> Wie geht das?


1.)  Hast du dir den Funktionsgraph aufgezeichnet und angeschaut ?

2.)  Offenbar sind zwei getrennte Bereiche separat zu untersuchen.
     Mittels der Ableitung sollte die Monotonie leicht zu testen sein.

3.)  Für die Umkehrfunktion löse einfach mal die Gleichung y=f(x)
     nach x auf, wie üblich ...

LG   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]