www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Umkehrfunktionen
Umkehrfunktionen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen: Korrekturlesen bitte!
Status: (Frage) beantwortet Status 
Datum: 23:46 Di 21.02.2006
Autor: Ivana

Aufgabe
Bestimmen Sie die Ableitungsfunktion von f mit Hilfe der Umkehrformel (1. Fassung).

Als erstes möchte ich mich dafür entschuldigen, weil ich nicht wusste, wo ich meine Frage, in welchem Forum, stellen soll.
Ich habe die obrige Aufgaben nach meiner Aufassung nach, gelöst.
Aber ich würde euch bitten, noch einmal drüber zu sehen, ob dort auch wircklich nichts fehlt oder die Aufgabe vielleicht noch weiter geführt werden könnte.

Übung 1

d) f(x)= [mm] \wurzel[3]{2x-2}, [/mm] x>1

Lösung:

nach x umstellen:

y= [mm] \wurzel[3]{2x-2} [/mm]
y³=2x-2 | +2; :2
x= [mm] \bruch{y³+2}{2} [/mm]

Variablen vertauschen:
y= [mm] \bruch{x³+2}{2} [/mm]
f-1(x)= [mm] \bruch{x³}{2} [/mm]   <<<<< die -1 hinter dem f soll oben stehen

Umkehrfunktion ableiten:
(f-1)' (x)= [mm] \bruch{3}{2}x² [/mm]

Umkehrformel (1. Fassung):
f '(x)= [mm] \bruch{1}{(f-1) ' (f(x))} [/mm]
f ' (x)= [mm] \bruch{1}{ \bruch{3 *( \wurzel[3]{2x-2)²}}{2}} [/mm]
f ' (x)= [mm] \bruch{2}{3*( \wurzel[3]{2x-2)²}} [/mm]

Ich hoffe, dass alles verständlich ist und dass ich alle Eingabehilfen richtig genutzt habe.

Vielen dank schon einmal im Vorraus

Iva

        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Mi 22.02.2006
Autor: sandmann0187

hey ho,

> d) f(x)= [mm]\wurzel[3]{2x-2},[/mm] x>1
>  
> Lösung:
>  
> nach x umstellen:
>  
> y= [mm]\wurzel[3]{2x-2}[/mm]
>  y³=2x-2 | +2; :2
>  x= [mm]\bruch{y³+2}{2}[/mm]
>  
> Variablen vertauschen:
>  y= [mm]\bruch{x³+2}{2}[/mm]

bis hierhin ist es richtig;
wie kommst du von [mm] \bruch{x³+2}{2} [/mm] auf [mm] \bruch{x³}{2} [/mm] ???
hast du da nicht die 1 vergessen?

demzufolge lautet die umkehrfunktion  [mm] f^{-1}(x)=\bruch{x³}{2}+1 [/mm]

>  f-1(x)= [mm]\bruch{x³}{2}[/mm]   <<<<< die -1 hinter dem f soll
> oben stehen
>  
> Umkehrfunktion ableiten:
>  (f-1)' (x)= [mm]\bruch{3}{2}x²[/mm]

Die stimmt dann wieder.

> Umkehrformel (1. Fassung):
>  f '(x)= [mm]\bruch{1}{(f-1) ' (f(x))}[/mm]
>  f ' (x)= [mm]\bruch{1}{ \bruch{3 *( \wurzel[3]{2x-2)²}}{2}}[/mm]
>  
> f ' (x)= [mm]\bruch{2}{3*( \wurzel[3]{2x-2)²}}[/mm]
>  

und dass stimmt auch,

gruß andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]