www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Umkehrfunktionen
Umkehrfunktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 19.07.2014
Autor: alfonso2020

Aufgabe
Für welche x [mm] \in [/mm] R gelten folgende Formeln :

a) arccsc(x)- [mm] arcsin(\bruch{1}{x})=0 [/mm]

b) [mm] arctan(x)+arctan(\bruch{1}{x})=\bruch{\pi}{2} [/mm]

c) [mm] arcsin(\wurzel{1-x^{2}}-arccos(x)=0 [/mm]

Hinweis : Fassen Sie die linke Seite der Gleichung als Funktion auf und bestimmen Sie die Ableitung.

Hallo,

ich übe momentan für die anstehende Klausur und habe bereits die Lösungen für diese Aufgaben. Jedoch verstehe ich den Lösungsweg nicht bzw. weiß nicht, was wirklich gesucht ist, weil ich die Aufgabe an sich nicht verstehe.

Wieso soll ich die Ableitung bilden? Wieso muss ich, nach dem ich die Ableitung gebildet habe wieder eine Zahl aus dem Definitionsbereich in die Ausgangsfunktion setzen? Ist die gewählte Zahl beliebig oder sollte man auf noch etwas achten?



        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 19.07.2014
Autor: rmix22


> Für welche x [mm]\in[/mm] R gelten folgende Formeln :
>  
> a) arccsc(x)- [mm]arcsin(\bruch{1}{x})=0[/mm]
>  
> b) [mm]arctan(x)+arctan(\bruch{1}{x})=\bruch{\pi}{2}[/mm]
>  
> c) [mm]arcsin(\wurzel{1-x^{2}}-arccos(x)=0[/mm]
>  
> Hinweis : Fassen Sie die linke Seite der Gleichung als
> Funktion auf und bestimmen Sie die Ableitung.
>  Hallo,
>  
> ich übe momentan für die anstehende Klausur und habe
> bereits die Lösungen für diese Aufgaben. Jedoch verstehe
> ich den Lösungsweg nicht bzw. weiß nicht, was wirklich
> gesucht ist, weil ich die Aufgabe an sich nicht verstehe.
>  
> Wieso soll ich die Ableitung bilden? Wieso muss ich, nach
> dem ich die Ableitung gebildet habe wieder eine Zahl aus
> dem Definitionsbereich in die Ausgangsfunktion setzen? Ist
> die gewählte Zahl beliebig oder sollte man auf noch etwas
> achten?
>
>  

Wenn du die Linksterme wie vorgeschlagen als Funktion interpretierst, dann bedeuten die Gleichungen im Wesentlichen, dass diese Funktionen konstant sein sollen (0 bzw. pi/2). Die Ableitung einer konstanten Funktion ist Null. Wenn du also ableitest und nachsiehst, für welche x diese Ableitung jeweils Null ist, weißt du, dass die Funktion für diese x-Werte konstant ist. Allerdings ist damit noch nicht gesagt, dass es sich um die richtige Konstante (0 bzw. pi/2) handelt. Das wird hier offenbar durch Einsetzen eines Wertes sichergestellt. Letzteres könnte schief gehen, wenn die Funktion eine Unstetigkeitsstelle in Form eines endlichen Sprungs aufweist (Treppe) - das wäre also auch noch zu berücksichtigen.

Gruß RMix


Bezug
                
Bezug
Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Sa 19.07.2014
Autor: alfonso2020

So ganz leuchtet es mir leider nicht ein. Ich verstehe, dass die linke Seite der Gleichung konstant wäre, wenn man diese als Funktion auffasst und auch, dass die Ableitung einer konstanten Funktion 0 ist und man somit schauen kann, für welche x die Ausgangsfunktion konstant ist. Jedoch verstehe ich es dann nicht, wie ich es bei der Teilaufgabe a) machen würde.

Wenn ich ableite erhalte ich :

[mm] -\bruch{1}{|x|\wurzel{x^{2}-1}}-\bruch{1}{\wurzel{-x^{2}+1}}*(-\bruch{1}{x^{2}}) [/mm]

Wie finde ich denn hier heraus, für welche x die Ableitungsfunktion 0 ist?

Bezug
                        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Sa 19.07.2014
Autor: Diophant

Hallo,

> So ganz leuchtet es mir leider nicht ein. Ich verstehe,
> dass die linke Seite der Gleichung konstant wäre, wenn man
> diese als Funktion auffasst und auch, dass die Ableitung
> einer konstanten Funktion 0 ist und man somit schauen kann,
> für welche x die Ausgangsfunktion konstant ist. Jedoch
> verstehe ich es dann nicht, wie ich es bei der Teilaufgabe
> a) machen würde.

>

> Wenn ich ableite erhalte ich :

>

> [mm]-\bruch{1}{|x|\wurzel{x^{2}-1}}-\bruch{1}{\wurzel{-x^{2}+1}}*(-\bruch{1}{x^{2}})[/mm]

>

Da ist dir zunächst mal beim Ableiten des Arkussinusterms ein Fehler unterlaufen. Mit der Definition des Kosekans ausgerüstet, müsste man da an dieser Stelle eigentlich gar nichts mehr rechnen, so viel als Tipp...

> Wie finde ich denn hier heraus, für welche x die
> Ableitungsfunktion 0 ist?

Theoretisch, indem du den Term gleich Null setzt und die so entstandene Gleichung nach x auflöst. Das wird aber bei Aufgabe a) nicht nötig sein, die anderen habe ich (bis jetzt) noch nicht durchgerechnet.


Gruß, Diophant

Bezug
                                
Bezug
Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Sa 19.07.2014
Autor: alfonso2020

Stimmt. Die Ableitung des Arkussinusterms müsste :

[mm] -\bruch{1}{\wurzel{1-\bruch{1}{x^{2}}}}\cdot{}(-\bruch{1}{x^{2}}) [/mm] sein.

Mist, habe echt ein Brett vor dem Kopf :/

Bezug
                                        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 19.07.2014
Autor: Diophant

Hallo,

> Stimmt. Die Ableitung des Arkussinusterms müsste :

>

> [mm]-\bruch{1}{\wurzel{1-\bruch{1}{x^{2}}}}\cdot{}(-\bruch{1}{x^{2}})[/mm]
> sein.

>

> Mist, habe echt ein Brett vor dem Kopf :/

Nein, es ist besser, aber immer noch ein Minus zu viel! Vergleiche auch mal mit der Ableitung des Arkuskotangens...

Gruß, Diophant

Bezug
                                                
Bezug
Umkehrfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 Sa 19.07.2014
Autor: alfonso2020

$ [mm] \bruch{1}{\wurzel{1-\bruch{1}{x^{2}}}}\cdot{}(-\bruch{1}{x^{2}}) [/mm] $

Pardon, das Minus vor dem ersten Bruch war noch aus der Ausgangsfunktion.


Bezug
                                                        
Bezug
Umkehrfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 19.07.2014
Autor: alfonso2020

Sorry, meine Frage besteht noch. Die Frage ist noch offen und deshalb noch eine " Reaktion nötig". Meinen vorherigen Post aus versehen als Mitteilung versendet.

Bezug
                                                                
Bezug
Umkehrfunktionen: Grundlegendes...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Sa 19.07.2014
Autor: Diophant

Hallo,

> Sorry, meine Frage besteht noch. Die Frage ist noch offen
> und deshalb noch eine " Reaktion nötig". Meinen vorherigen
> Post aus versehen als Mitteilung versendet.

Ein Frageartikel sollte schon auch inhaltlich eine Frage enthalten. Der Hinweis sei erlaubt: das ist hier kein Chat sondern eine ernsthafte Fachberatung. Deine Ableitung war ja jetzt richtig, darüberhinaus konnte ich keinerlei Fragestellung erkennen, daher die Umwandlung (die von mir vorgenommen wurde)!

Nimm dir also lieber und gerne viel mehr Zeit, die gegebenen Antworten nachzuvollziehen. Ich habe dir in meiner Antwort die Lösung zur a) auf dem Silbertablett serviert, wie man so schön sagt, aber du hast das offensichtlich gar nicht gelesen.

Gruß, Diophant

Bezug
        
Bezug
Umkehrfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Sa 19.07.2014
Autor: hippias

Entweder uebersehe ich hier eine Besonderheit bei den in Frage stehenden Funktionen oder der Hinweis ist absolut wertlos und irrefuehrend. Denn die Loesung einer Gleichung $f(x)= c$ hat i.a. rein gar nichts mit der Gleichung $f'(x)= 0$ zu tun. Oder anschaulicher gesagt: wo der Graph von $f$ die Gerade $y= c$ schneidet hat nichts mit den Stellen zu tun, an denen $f$ Steigung $=0$ hat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]