www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Umkehrfunktion in Summe
Umkehrfunktion in Summe < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion in Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 17.11.2011
Autor: Pille456

Hi,

folgende Frage kam mir heute unter:
Sei [mm] g:[0,1]\to\IR [/mm] eine streng monoton wachsende Funktion mit g(0)=0, gilt dann: [mm] g^{-1}(g(1)-g(a))=g^{-1}(g(1))-g^{-1}(g(a))=1-a [/mm] ?
Meiner Meinung nach gilt das nicht. Beachte folgendes Gegenbeispiel:
g(0)=0
g(0.1)=2
g(0.2)=3
g(0.3)=4
g(0.4)=5
g(0.5)=6
g(0.6)=7
g(0.7)=8
g(0.8)=9
g(0.9)=10
g(1)=11
mit a=0.1
[mm] g^{-1}(g(1)-g(0.1))=g^{-1}(11-2)=g^{-1}(9)=0.8\not=g^{-1}(g(1))-g^{-1}(g(0.1))=1-0.1=0.9 [/mm]

Da ich mir gerade nicht so sicher bin, ob ich nicht etwas übersehen habe, hier nochmal die Nachfrage - stimmt das so?^^

        
Bezug
Umkehrfunktion in Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Do 17.11.2011
Autor: chrisno

Du hast Recht.
> [mm]g^{-1}(g(1)-g(a))=g^{-1}(g(1))-g^{-1}(g(a))=1-a[/mm] ?

Für das erste Gleichheitszeichen muss noch eine weitere Voraussetzung für die Umkehrfunktion gelten.
Diese lautet, dass der Funktionswert einer Summe gleich der Summe der Funktionswerte ist.

Bezug
                
Bezug
Umkehrfunktion in Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:36 Do 17.11.2011
Autor: Pille456

Hio!

Danke für Deine Antwort und vorallem, dass Du es nochmal ausformuliert hast als "Regel". Sowas hilft immer sehr zum Verständnis ;-)

Gruß
Pille

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]