www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:01 Fr 11.02.2011
Autor: sommerregen

Aufgabe
Sei f : A [mm] \to [/mm] B und b [mm] \in [/mm]  B. Worin unterscheiden sich [mm] f^{-1}; f^{-1} [/mm] ({b}) und [mm] f^{-1}(b)? [/mm]

Guten Morgen,

auch bei der Aufgabe komme ich nicht weiter bzw. habe noch nichtmal einen Ansatz.
[mm] f^{-1} [/mm] würde ich als die "komplette" Umkehrfunktion von f sehen. Aber die anderen beiden? Damit eine Funktion eine Umkehrfunktion haben kann, muss sie doch bijektiv sein, oder? Also kann b auch nur genau ein Urbild haben.
Irgendwie stehe ich gerade voll auf dem Schlauch.

Mag mir mal jemand helfen?
Liebe Grüße!

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Fr 11.02.2011
Autor: fred97


> Sei f : A [mm]\to[/mm] B und b [mm]\in[/mm]  B. Worin unterscheiden sich
> [mm]f^{-1}; f^{-1}[/mm] ({b}) und [mm]f^{-1}(b)?[/mm]
>  Guten Morgen,
>  
> auch bei der Aufgabe komme ich nicht weiter bzw. habe noch
> nichtmal einen Ansatz.
>  [mm]f^{-1}[/mm] würde ich als die "komplette" Umkehrfunktion von f
> sehen.

Ja, falls eine Umkehrfunktion existiert.


>  Aber die anderen beiden?



Sei C Teilmenge von B. Dann hat man folgende Definition:

     (*)          [mm] $f^{-1}(C):= \{x \in A: f(x) \in C\}$. [/mm]

Links steht also das Symbol [mm] f^{-1}, [/mm] obwohl eine Umkehrfunktion nicht ex. muß. Bei (*) handelt es sich lediglich um eine Schreibweise.

Aus (*) folgt dann:

                  [mm] $f^{-1}(\{b\}):= \{x \in A: f(x) =b\}$. [/mm]


Das Symbol  $ [mm] f^{-1}(b)$ [/mm]  ist nur sinnvoll wenn eine Umkehrfunktion ex.  Dann bedeutet es den Funktionswert von [mm] f^{-1} [/mm] an der Stelle b.

FRED


> Damit eine Funktion eine
> Umkehrfunktion haben kann, muss sie doch bijektiv sein,
> oder? Also kann b auch nur genau ein Urbild haben.
>  Irgendwie stehe ich gerade voll auf dem Schlauch.
>  
> Mag mir mal jemand helfen?
>  Liebe Grüße!


Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Fr 11.02.2011
Autor: sommerregen

Alles klar! Vielen Dank für die ausführliche Hilfe, jetzt habe ichs verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]