www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Umkehrfunktion
Umkehrfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:17 Fr 20.01.2006
Autor: monk1985

Aufgabe
Bestimmen Sie für   [mm] \bruch{2x}{x+1} [/mm]
die Ableitung der Umkehrfunktion durch Anwendung der Regel für die Ableitung inverser Funktionen

Hi!
Ich komme leider nicht mit der Aufgabe weiter.Ich weiß nicht ,wie man mit der Regel für die Ableitung inverser Funktionen auf die Ableitung kommt.
ich habe es durch die Differentiation versucht und komme auf das ergebnis
[mm] \bruch{2}{(2-x)²}.Doch [/mm] wie komme ich auf das ergebnis mit der Inversen-Regel???

Danke

        
Bezug
Umkehrfunktion: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 20.01.2006
Autor: MathePower

Hallo monk1985,

> Bestimmen Sie für   [mm]\bruch{2x}{x+1}[/mm]
>  die Ableitung der Umkehrfunktion durch Anwendung der Regel
> für die Ableitung inverser Funktionen
>  Hi!
>  Ich komme leider nicht mit der Aufgabe weiter.Ich weiß
> nicht ,wie man mit der Regel für die Ableitung inverser
> Funktionen auf die Ableitung kommt.
>  ich habe es durch die Differentiation versucht und komme
> auf das ergebnis
> [mm]\bruch{2}{(2-x)²}.Doch[/mm] wie komme ich auf das ergebnis mit
> der Inversen-Regel???

Die Inversen-Regel besagt ja:

[mm]x'\; = \;\frac{1} {{y'(x(y))}}[/mm]

,wobei x die Umkehrfunktion zu y ist.

Berechne daher zunächst y'(x).

Für das Argument setzt Du jetzt die Umkehrfunktion x(y) ein.

[mm]x'(y)\;=\;\bruch{1}{y'(x(y))}[/mm] ist dann die Ableitung der Umkehrfunktion.

Zu guter letzt vertauscht Du x und y.

Das war's auch schon.

Näheres dazu siehe []Umkehrregel.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]