www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Umkehrbarkeit
Umkehrbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Di 17.01.2017
Autor: Trikolon

Hallo,

habe folgende Frage: Wie zeigt man, dass eine Funktion global invertierbar ist?
Die lokale Invertierbarkeit ist mir klar. Aber bisher habe ich immer nur Beispiele gesehen, in denen man zeigen konnte, dass die Funktion nicht global invertierbar ist, weil sie nicht injektiv war... Finde auch keine Definition zur globalen Invertierbarkeit

Danke im Voraus!

        
Bezug
Umkehrbarkeit: Welche Art Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 17.01.2017
Autor: Diophant

Hallo,

von welcher Art von Funktion sprichst du? Also etwa [mm] \IR\to\IR [/mm] (hier noch: stetig oder nicht) oder ganz allgemein?

Gruß, Diophant

Bezug
        
Bezug
Umkehrbarkeit: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:15 Di 17.01.2017
Autor: leduart

Hallo
sie ist genau invertierter, wenn sie stetig und injektiv ist.
[mm] x^2 [/mm] ist global nicht umkehrbar aber [mm] f(x)=x^2 [/mm] von IR^+->IR^+ ist  global umkehrbar.
Gruß ledum


Bezug
                
Bezug
Umkehrbarkeit: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:25 Di 17.01.2017
Autor: Diophant

Hallo leduart,

> sie ist genau invertierter, wenn sie stetig und injektiv
> ist.
> [mm]x^2[/mm] ist global nicht umkehrbar aber [mm]f(x)=x^2[/mm] von
> IR^+->IR^+ ist global umkehrbar.
> Gruß ledum

Das ist völlig falsch, denn zur Umkehrbarkeit braucht es keine Stetigkeit. Letzendlich ist das einzige, was man forden muss Bijektivität.

Natürlich gibt es bestimmte Funktionstypen, natürlich gibt es die Frage nach der Deutung des Begriffs Funktion (also insbesondere, ob man Definitions- und Zielmenge berücksichtigt). Genau deshalb habe ich doch meine Mitteilung verfasst...

Gruß, Diophant

Bezug
        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 17.01.2017
Autor: Diophant

Hallo,

> habe folgende Frage: Wie zeigt man, dass eine Funktion
> global invertierbar ist?
> Die lokale Invertierbarkeit ist mir klar. Aber bisher habe
> ich immer nur Beispiele gesehen, in denen man zeigen
> konnte, dass die Funktion nicht global invertierbar ist,
> weil sie nicht injektiv war... Finde auch keine Definition
> zur globalen Invertierbarkeit

Dann hast du nicht gründlich gesucht. Eine Funktion ist genau dann umkehrbar, wenn sie bijektiv ist.

Wenn du eine auf deine Bedürfnisse besser passende Antwort erwartest, dann solltest du wie schon angefragt zunäscht einmal mitteilen, von welcher Art Funktion wir hier sprechen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]