www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - "Umgekehrte" Monotonie
"Umgekehrte" Monotonie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Umgekehrte" Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Do 21.05.2009
Autor: Fry

Aufgabe
[mm] (\Omega,A,\mu) [/mm] sei ein Maßraum, [mm] A_0 [/mm] eine Algebra mit [mm] A=\sigma(A_0) [/mm] und f,g  seien [mm] \mu-integrierbare [/mm] Fkten. Zeigen Sie:
[mm] \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu} [/mm] für alle [mm] B\in A_0\Rightarrow f\le [/mm] g [mm] \mu [/mm] fast sicher.
Hinweis: [mm] M=\{ B\in A, \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}\} [/mm] ist eine monotone Klasse.

Definition: [mm] \integral_{B}^{}{f d\mu}:=\integral_{}^{}{f*1_B d\mu} [/mm]

Hallo,

ich komme bei der Aufgabe überhaupt nicht weiter. Da ja A Algebra, ist [mm] \sigma(A_0) [/mm] eine monotone Klasse, was auch der Tipp beinhaltet,aber dann...?  Hat jemand vielleicht Tipps für mich, wie ich ans Ziel kommen kann? Wäre echt super. Danke!

LG
Fry

        
Bezug
"Umgekehrte" Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 21.05.2009
Autor: felixf

Hallo Fry

> [mm](\Omega,A,\mu)[/mm] sei ein Maßraum, [mm]A_0[/mm] eine Algebra mit
> [mm]A=\sigma(A_0)[/mm] und f,g  seien [mm]\mu-integrierbare[/mm] Fkten.
> Zeigen Sie:
>  [mm]\integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}[/mm] für
> alle [mm]B\in A_0\Rightarrow f\le[/mm] g [mm]\mu[/mm] fast sicher.
>  Hinweis: [mm]M=\{ B\in A, \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}\}[/mm]
> ist eine monotone Klasse.
>  
> Definition: [mm]\integral_{B}^{}{f d\mu}:=\integral_{}^{}{f*1_B d\mu}[/mm]
>  
> Hallo,
>  
> ich komme bei der Aufgabe überhaupt nicht weiter. Da ja A
> Algebra, ist [mm]\sigma(A_0)[/mm] eine monotone Klasse, was auch der
> Tipp beinhaltet,aber dann...?  Hat jemand vielleicht Tipps
> für mich, wie ich ans Ziel kommen kann? Wäre echt super.
> Danke!

Du sollst zeigen, dass $M$ eine monotone Klasse ist. Nach Voraussetzung gilt [mm] $A_0 \subseteq [/mm] M$, womit aus dem []Satz ueber monotone Klassen folgt, dass $A = [mm] \sigma(A_0) \subseteq [/mm] M [mm] \subseteq [/mm] A$ gilt, also $A = M$.

Jetzt wiederum solltet ihr einen Satz haben, der aus [mm] $\int_B [/mm] f [mm] d\mu \le \int_B [/mm] g [mm] d\mu$ [/mm] fuer alle $B [mm] \in [/mm] A$ folgert, dass $f [mm] \le [/mm] g$ [mm] $\mu$-fast [/mm] ueberall gilt. Damit folgt dann die Behauptung.

LG Felix


Bezug
                
Bezug
"Umgekehrte" Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Fr 22.05.2009
Autor: Fry

Super, danke Felix, hab erst gedacht, dass die Eigenschaft sich automatisch von [mm] A_0 [/mm] auf A überträgt.

Gruß

Bezug
                        
Bezug
"Umgekehrte" Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Fr 22.05.2009
Autor: felixf

Hallo Fry

> Super, danke Felix, hab erst gedacht, dass die Eigenschaft
> sich automatisch von [mm]A_0[/mm] auf A überträgt.

Ich denke es ist immer eine monotone Klasse, hauptsache $f$ und $g$ sind [mm] $\mu$-integrierbar. [/mm] Und wenn da halt genug drinnen liegt, muss $M = A$ sein, und genug drinnen liegen heisst z.B. dass [mm] $A_0$ [/mm] drinnen liegt (was nach Voraussetzung der Fall ist).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]