www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Umformung komplexe Zahlen
Umformung komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung komplexe Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:13 Do 08.12.2005
Autor: tj4life

Brauche Hilfe bei folgender Aufgabe:

Schreiben Sie die folgenden Zahlen in der Form a+bi mit a,b [mm] \in \IR: [/mm]

1.  [mm] \bruch{(1+2i)(1-2i) }{(1+i)^{2}} [/mm] ,


2.  [mm] \bruch{|2+i|(1-2i)}{\overline{(1+i)}(3+i)} [/mm]

Ist dies richtig??
1. = [mm] \bruch{1-i+2i-2}{1+2i-1} [/mm] =  [mm] \bruch{i-1}{2i} [/mm]
Wie mach ich weiter um auf die Schreibweise a+bi zu kommen.

2. =  [mm] \bruch{|2+i| (1-2i)}{2+4i} [/mm]
Wie mach ich hier weiter? Wie löse ich den Betrag auf?

        
Bezug
Umformung komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Do 08.12.2005
Autor: Julius

Hallo!

> Schreiben Sie die folgenden Zahlen in der Form a+bi mit a,b
> [mm]\in \IR:[/mm]
>  
> 1.  [mm]\bruch{(1+2i)(1-2i) }{(1+i)^{2}}[/mm] ,
>  
>
> 2.  [mm]\bruch{|2+i|(1-2i)}{\overline{(1+i)}(3+i)}[/mm]
>  
> Ist dies richtig??
>  1. = [mm]\bruch{1-i+2i-2}{1+2i-1}[/mm] =  [mm]\bruch{i-1}{2i}[/mm]
>  Wie mach ich weiter um auf die Schreibweise a+bi zu
> kommen.

Wie kommst du auf [mm] $\red{-i}$ [/mm] und [mm] $\red{-2}$? [/mm] Oder hast du dich bei der Aufgabenstellung verschrieben?

Anschließend mit dem konjugiert Komplexen des Nenners erweitern...
  

> 2. =  [mm]\bruch{|2+i| (1-2i)}{2+4i}[/mm]
>  Wie mach ich hier weiter?
> Wie löse ich den Betrag auf?

$|2+i|$ kann man unmittelbar ausrechnen:

$|a+ib| = [mm] \sqrt{a^2+b^2}$. [/mm]

Liebe Grüße
Julius


Bezug
                
Bezug
Umformung komplexe Zahlen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:17 Do 08.12.2005
Autor: tj4life

sorry,

hab mich in der Aufgabenstellung vertan.

In der ersten Aufgabe heißt es:

[mm] \bruch{(1+2i)(1-i)}{(1+i)^{2}} [/mm]

Ist es denn dann richtig oder nicht? Und wie erweiter ich mit dem konjugierten???

Bezug
                        
Bezug
Umformung komplexe Zahlen: Vorzeichenfehler (edit.)
Status: (Antwort) fertig Status 
Datum: 13:32 Do 08.12.2005
Autor: Roadrunner

Hallo tj4life!


Nein, dann stimmt es auch nicht. Du hast Dich mit den Vorzeichen im Zähler vertan. Bedenke, dass [mm] $i^2 [/mm] \ = \ -1$ .

Ich erhalte: [mm] $\bruch{3+\blue{i}}{2i}$ [/mm]

Edit: Tippfehler im Zähler korrigiert. Roadrunner


In diesem Falle hier reicht es auch, den Bruch mit $i_$ zu erweitern, um $i_$ aus dem Nenner zu entfernen.


Ansonsten heißt "mit dem Konjugierten erweitern":

Nenner = $a+i*b_$ , dann musst Du erweitern mit $a \ [mm] \red{-} [/mm] \ i*b$ .

Dann wird im Nenner nämlich: $(a+i*b)*(a-i*b) \ = \ [mm] a^2 [/mm] - [mm] i^2*b^2 [/mm] \ = \ [mm] a^2 [/mm] - [mm] (-1)*b^2 [/mm] \ = \ [mm] a^2 [/mm] + [mm] b^2$ [/mm]


Gruß vom
Roadrunner


Bezug
                                
Bezug
Umformung komplexe Zahlen: Problem
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 08.12.2005
Autor: tj4life

Kann mir jemand wenigstens eine der beiden Aufgaben lösen??

Ich hab es desöfteren versucht und komm immer wieder auf ein anderes Ergebnis!

Danke!

Bezug
                                        
Bezug
Umformung komplexe Zahlen: ein Beispiel
Status: (Antwort) fertig Status 
Datum: 08:46 Fr 09.12.2005
Autor: Herby

Hallo tj4life,

[morgaehn] und nur keine Hektik :-)


Die Zusammenfassung komplexer Zahlen basiert auf den bekannten Rechenregeln, wie du leicht erkennen kannst. Ich zeige dir das einmal an der ersten Aufgabe.


[mm] \bruch{(1+2i)(1-i)}{(1+i)²}= \bruch{1-i+2i-(2i²)}{1+i+i+(i²)}=\bruch{1+i-(-2)}{1+2i+(-1)}= \bruch{3+i}{2i} [/mm]

Jetzt wird mit dem konjugiert komplexen Zeiger des NENNERS multipliziert, also mit (-2i)

Das ergibt:

[mm] \bruch{(3+i)(-2i)}{2i(-2i)}= \bruch{-6i-2i²}{-4i²}=\bruch{-6i+2}{4}=\bruch{2*(1-3i)}{2*2}=\bruch{1-3i}{2}=\bruch{1}{2}-\bruch{3}{2}i [/mm]


Versuch nochmal die zweite Aufgabe und poste deinen Lösungsweg, dann können wir auf Fehlersuche gehen.


Liebe Grüße
Herby


Bezug
                                
Bezug
Umformung komplexe Zahlen: Anderes Ergebnis
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 08.12.2005
Autor: vicky

Also ich habe folgendes Ergebnis erhalten:  [mm] \bruch{-1+3i}{2} [/mm]

Gruß vicky

Bezug
                                        
Bezug
Umformung komplexe Zahlen: nicht richtig!
Status: (Antwort) fertig Status 
Datum: 07:41 Fr 09.12.2005
Autor: Herby

Hallo Monic,
ein fröhliches "Guten Morgen" :-) wie auch ein herzliches [willkommenmr]

> Also ich habe folgendes Ergebnis erhalten:  
> [mm]\bruch{-1+3i}{2}[/mm]
>  
> Gruß vicky

Das ist nicht ganz richtig! Auch Vorzeichenfehler.


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]