www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Umformung in Komplexe schreibw
Umformung in Komplexe schreibw < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung in Komplexe schreibw: Wie vorgehen?
Status: (Frage) beantwortet Status 
Datum: 15:18 Mi 18.01.2012
Autor: jooo

Aufgabe
Hallo
(1)  [mm] \bruch{s+3}{s^2+2s+5} [/mm]  

(2)  [mm] \bruch{s+3}{(s+(1-j2))*(s+(1+j2))} [/mm]

Wie komme ich von 1 zu 2??

Gruß Jo

        
Bezug
Umformung in Komplexe schreibw: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 18.01.2012
Autor: fred97


> Hallo
>  (1)  [mm]\bruch{s+3}{s^2+2s+5}[/mm]  
>
> (2)  [mm]\bruch{s+3}{(s+(1-j2))*(s+(1+j2))}[/mm]
>  Wie komme ich von 1 zu 2??
>  
> Gruß Jo


Ich denke , dass Du hier mit j die imaginäre Einheit meinst. Wenn ja, so multipliziere aus:

            [mm] (s+(1-j2))*(s+(1+j2)[/mm]

FRED

Bezug
                
Bezug
Umformung in Komplexe schreibw: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 18.01.2012
Autor: jooo

>>Ich denke , dass Du hier mit j die imaginäre Einheit meinst.
Ja meine ich
>>Wenn ja, so multipliziere aus:

>>            (s+(1-j2))*(s+(1+j2)

Das ist soweit klar!
Aber mir ist folgendes gegeben.
[mm] \bruch{s+3}{s^2+2s+5} [/mm]
Und ich will die Polstellen ermitteln
Benötige also den Ausdruck in der Form:
[mm] \bruch{s+3}{(s+(1-j2))\cdot{}(s+(1+j2))} [/mm]

Wie komme ich jedoch auf den Ausdruck . Proboieren?
Der umgekehrte Weg ist mir klar(einfach ausmultiplizieren)

Bezug
                        
Bezug
Umformung in Komplexe schreibw: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 18.01.2012
Autor: fred97


> >>Ich denke , dass Du hier mit j die imaginäre Einheit
> meinst.
>  Ja meine ich
>  >>Wenn ja, so multipliziere aus:
>  
> >>            (s+(1-j2))*(s+(1+j2)

>
> Das ist soweit klar!
>  Aber mir ist folgendes gegeben.
>  [mm]\bruch{s+3}{s^2+2s+5}[/mm]
>  Und ich will die Polstellen ermitteln
>  Benötige also den Ausdruck in der Form:
> [mm]\bruch{s+3}{(s+(1-j2))\cdot{}(s+(1+j2))}[/mm]
>  
> Wie komme ich jedoch auf den Ausdruck . Proboieren?
>  Der umgekehrte Weg ist mir klar(einfach ausmultiplizieren)


Seien [mm] s_1 [/mm] und [mm] s_2 [/mm] die Nullstellen des Polynoms [mm] $p(s)=s^2+2s+5$. [/mm] Dann gilt doch:

                       [mm] $p(s)=s^2+2s+5=(s-s_1)*(s-s_2)$ [/mm]

Du suchst also [mm] s_1 [/mm] und [mm] s_2. [/mm] Und wie kriegst Du die beiden ? Ganz einfach: löse die Gl.

                      [mm] $s^2+2s+5=0$. [/mm]

Dafür gibts eine Formel, die benannt ist nach dem chinesischen Mathematiker  

                        PeeQuu Folmel  (1765-1806)

Gluß FLED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]