www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Umformung2
Umformung2 < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung2: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:03 Do 11.11.2010
Autor: SolRakt

Hallo,

Zu zeigen ist:

[mm] |a^{x}-a^{y}| \ge [/mm]

[mm] a^{x+1}|x-y| [/mm] falls a [mm] \ge [/mm] 1
[mm] a^{y-1}|x-y| [/mm] falls a [mm] \le [/mm] 1

So, a > 0 und x,y [mm] \varepsilon \IR [/mm] mit x [mm] \ge [/mm] y

Als Hinweis sollen wir folgendes benutzen:

Für a [mm] \varepsilon \IR [/mm] mit a [mm] \ge [/mm] 1, x [mm] \varepsilon \IR+ [/mm] gilt
0 [mm] \le a^{x}-1 \le [/mm] x [mm] a^{x+1} [/mm]

Für a [mm] \varepsilon [/mm] (0,1], x [mm] \varepsilon \IR+ [/mm] gilt
0 [mm] \le 1-a^{x} \le [/mm] x [mm] a^{-1} [/mm]

Man muss doch nun von den beiden Hinweisen jeweils auf die oberste Ungleichung kommen, aber ich kriege das nicht hin, hab auch keinen Ansatz. Wäre nett, wenn mir jemand helfen könnte. Danke schonmal sehr.



        
Bezug
Umformung2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 11.11.2010
Autor: abakus


> Hallo,
>  
> Zu zeigen ist:
>  
> [mm]|a^{x}-a^{y}| \ge[/mm]
>  
> [mm]a^{x+1}|x-y|[/mm] falls a [mm]\ge[/mm] 1
>  [mm]a^{y-1}|x-y|[/mm] falls a [mm]\le[/mm] 1

Hallo,
diese Ungleichungen sind Schrott.
Im Fall a=1 und x> y sind beide Ungleichungen definitiv falsch.
Gruß Abakus

>  
> So, a > 0 und x,y [mm]\varepsilon \IR[/mm] mit x [mm]\ge[/mm] y
>  
> Als Hinweis sollen wir folgendes benutzen:
>  
> Für a [mm]\varepsilon \IR[/mm] mit a [mm]\ge[/mm] 1, x [mm]\varepsilon \IR+[/mm]
> gilt
>  0 [mm]\le a^{x}-1 \le[/mm] x [mm]a^{x+1}[/mm]
>  
> Für a [mm]\varepsilon[/mm] (0,1], x [mm]\varepsilon \IR+[/mm] gilt
> 0 [mm]\le 1-a^{x} \le[/mm] x [mm]a^{-1}[/mm]
>  
> Man muss doch nun von den beiden Hinweisen jeweils auf die
> oberste Ungleichung kommen, aber ich kriege das nicht hin,
> hab auch keinen Ansatz. Wäre nett, wenn mir jemand helfen
> könnte. Danke schonmal sehr.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]