www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Umformung
Umformung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Satz von Bayes
Status: (Frage) beantwortet Status 
Datum: 11:34 Di 29.01.2013
Autor: bandchef

Aufgabe
Keine konkrete Aufgabe.

Ich hab hier diesen Ansatz:

$P(B|C) = [mm] \frac{P(C|B)\cdot P(B)}{P(C|B)\cdot P(B) + P(C|\overline{B}) \cdot P(\overline{B})} [/mm] = [mm] \frac{P(C|B)}{P(C|B) + P(C|\overline{B})}$ [/mm]

Wie kommt man auf diese Umformung? Irgendwie kommt mir das so vor als ob das $P(B)$ gekürzt worden ist. Aber ich kann doch nicht [mm] $P(\overline{B}$ [/mm] mit $P(B)$ kürzen, oder? Zumal man es ja auch gar nicht ausklammern kann!

Wie geht das dann hier?

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 29.01.2013
Autor: M.Rex


> Keine konkrete Aufgabe.
>  Ich hab hier diesen Ansatz:
>  
> [mm]P(B|C) = \frac{P(C|B)\cdot P(B)}{P(C|B)\cdot P(B) + P(C|\overline{B}) \cdot P(\overline{B})} = \frac{P(C|B)}{P(C|B) + P(C|\overline{B})}[/mm]
>  
> Wie kommt man auf diese Umformung? Irgendwie kommt mir das
> so vor als ob das [mm]P(B)[/mm] gekürzt worden ist. Aber ich kann
> doch nicht [mm]P(\overline{B}[/mm] mit [mm]P(B)[/mm] kürzen, oder? Zumal man
> es ja auch gar nicht ausklammern kann!

Das Kürzen geht in der Tat nur, wenn im hinteren Summanden des Nenners P(B) stehen würde.

Hier könnte man [mm] P(B)=1-P(\overline{B}) [/mm] nehmen.

Also:

[mm]\frac{P(C|B)\cdot P(B)}{P(C|B)\cdot P(B) + P(C|\overline{B}) \cdot P(\overline{B})}[/mm]
[mm]=\frac{P(C|B)\cdot P(B)}{P(C|B)\cdot P(B) + P(C|\overline{B}) \cdot(1-P(B))}[/mm]
[mm]=\frac{P(C|B)\cdot P(B)}{P(C|B)\cdot P(B) + P(C|\overline{B}) - P(C|\overline{B})\cdot P(B)}[/mm]
[mm]=\frac{P(C|B)\cdot P(B)}{P(B)\cdot(P(C|B)-P(C|\overline{B})) + P(C|\overline{B})}[/mm]

Kommst du damit schon weiter?

Interessamt wäre es zu erfahren, woher die Formel stammt. Dann könnte man evtl noch das ein oder andere sagen.

Marius


Bezug
                
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Di 29.01.2013
Autor: bandchef

Ich hab mittlerweile herausgefunden warum gekürzt werden darf! Bei $P(B)$ und [mm] $P(\overline{B})$ [/mm] handelt es sich um jeweils den gleichen Wahrscheinlichkeitswert! So gilt: $P(B) = [mm] P(\overline{B})$ [/mm] und ich darf kürzen!

Danke für deine Mühe!

Bezug
                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Di 29.01.2013
Autor: ullim

Hi,

wenn [mm] P(B)=P(\overline{B}) [/mm] gilt, dann gilt [mm] P(B)=\frac{1}{2} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]