www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Typ bestimmen von quadr.FOrm
Typ bestimmen von quadr.FOrm < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Typ bestimmen von quadr.FOrm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Sa 07.01.2006
Autor: student0815

Aufgabe
Aufgabe: Man bestimme den Typ einer quadratischen Form
Q(x)= [mm] x_{1} x_{2}+ x_{2} x_{3}. [/mm]

also ;
es fängt schon an beim ablesen der Matrix aus der quadratischen FOrm:
hab ich raus:

G=  [mm] \pmat{ 0 & \bruch{1}{2} & 0 \\ \bruch{1}{2} & 0 & \bruch{1}{2} \\ 0 & \bruch{1}{2} & 0} [/mm]

1.Frage stimmt das?
2. Frage Danach muss man doch diese matrix auf eine form bringen,
inder in der Hauptdiagonalen erst  p mal 1 steht , dann q -1 und r 0 oder??
also das ganze soll so aussehen:
[mm] \pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0} [/mm]

vielen dank für hilfe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Typ bestimmen von quadr.FOrm: Hauptachsentransformation
Status: (Antwort) fertig Status 
Datum: 22:42 So 08.01.2006
Autor: MathePower

Hallo student0815,

[willkommenmr]

> Aufgabe: Man bestimme den Typ einer quadratischen Form
> Q(x)= [mm]x_{1} x_{2}+ x_{2} x_{3}.[/mm]
>  also ;
> es fängt schon an beim ablesen der Matrix aus der
> quadratischen FOrm:
> hab ich raus:
>
> G=  [mm]\pmat{ 0 & \bruch{1}{2} & 0 \\ \bruch{1}{2} & 0 & \bruch{1}{2} \\ 0 & \bruch{1}{2} & 0}[/mm]
>
> 1.Frage stimmt das?

Ja. [ok]

> 2. Frage Danach muss man doch diese matrix auf eine form
> bringen,

Ja, das geht mit der Eigenwerttheorie.

>  inder in der Hauptdiagonalen erst  p mal 1 steht , dann q
> -1 und r 0 oder??
> also das ganze soll so aussehen:
> [mm]\pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0}[/mm]

Zunächst bestimme das charakterische Polynom der obigen Matrix.

[mm]\det(A\;-\;\lambda\;I)\;=\;0[/mm]

I ist hier die Einheitsmatrix.

Die Lösungen hiervon sind die Eigenwerte [mm]\lambda[/mm] der Matrix A.

Bestimme dann zu jedem Eigenwert [mm]\lambda[/mm] einen Eigenvektor:

Konkret: Bestimme eine Lösung von

[mm](A\;-\lambda\;I)\;\vec{ev}\;=\vec{0}[/mm]

Baue diese Eigenvektoren zu eine Matrix zusammen, in dem Du die spaltenweise in die Matrix schreibst. Das ist die Transformationsmatrix.

[mm]x\;=\;C\;x'[/mm]

Dann ergibt sich also

[mm]x^T\;A\;x\;=\;(C\;x')^T\;A\;(C\;x)\;=\;{x'}^T\;C^T\;A\;C\;x'[/mm]

Die Matrix [mm]C^T\;A\;C[/mm] ist diejenige Matrix, die auf der Hauptdiagonalen nur die Eigenwerte stehen hat und sonst lauter Nullen.

Gruß
MathePower

Bezug
                
Bezug
Typ bestimmen von quadr.FOrm: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Mo 09.01.2006
Autor: student0815

danke für die antwort.
jetzt weiß ich wieder wie's geht :)

Liebe Grüße student0815

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]