www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Tulpenstrauß
Tulpenstrauß < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tulpenstrauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Di 26.10.2021
Autor: hase-hh

Aufgabe
Ein Blumenladen stellt Blumensträuße aus jeweils 15 Tulpen zusammen. Es gibt gelbe Tulpen, orangene Tulpen und rote Tulpen.

Warum gibt es für einen zwei-farbigen Strauß [mm] \vektor{3 \\ 2}*14 [/mm] Möglichkeiten? Was ist hierbei die Bedeutung der Teile des Terms?

Moin Moin,

also:  [mm] \vektor{3 \\ 2} [/mm]  gibt die Anzahl der Möglichkeiten aus drei Farben zwei Farben auszuwählen an [wobei die Reihenfolge keine Rolle spielt und ohne Wiederholung gezogen wird].


14 finde ich schwieriger nachzuvollziehen?!


Gibt es dafür auch eine Formel, die ich anwenden kann?


Zunächst habe ich einen Zufallsversuch mit 15 Ziehungen und jeweils zwei möglichen Ergebnissen. Die Reihenfolge spielt hier keine Rolle und es wird mit Wiederholung gezogen.



Danke & Gruß






        
Bezug
Tulpenstrauß: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Di 26.10.2021
Autor: statler


> Ein Blumenladen stellt Blumensträuße aus jeweils 15
> Tulpen zusammen. Es gibt gelbe Tulpen, orangene Tulpen und
> rote Tulpen.
>
> Warum gibt es für einen zwei-farbigen Strauß [mm]\vektor{3 \\ 2}*14[/mm]
> Möglichkeiten? Was ist hierbei die Bedeutung der Teile des
> Terms?

Hi!

> also:  [mm]\vektor{3 \\ 2}[/mm]  gibt die Anzahl der Möglichkeiten
> aus drei Farben zwei Farben auszuwählen an [wobei die
> Reihenfolge keine Rolle spielt und ohne Wiederholung
> gezogen wird].
>

Klar!

>
> 14 finde ich schwieriger nachzuvollziehen?!
>

Da beide Farben wirklich vorkommen müssen und die Reihenfolge keine Rolle spielt, kann ich die Tulpen nach den Farben sortieren: erst alle von Farbe A und dann alle von Farbe B. Für die Anzahl der Tulpen von Farbe A gibt es dann die Möglichkeiten 1, 2, ... , 14. So kommt die 14 in die Welt.
>

> Gibt es dafür auch eine Formel, die ich anwenden kann?
>
>
> Zunächst habe ich einen Zufallsversuch mit 15 Ziehungen
> und jeweils zwei möglichen Ergebnissen. Die Reihenfolge
> spielt hier keine Rolle und es wird mit Wiederholung
> gezogen.
>

Gruß Dieter

Bezug
                
Bezug
Tulpenstrauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 26.10.2021
Autor: hase-hh

Moin !

   :

> > 14 finde ich schwieriger nachzuvollziehen?!
> >
> Da beide Farben wirklich vorkommen müssen und die
> Reihenfolge keine Rolle spielt, kann ich die Tulpen nach
> den Farben sortieren: erst alle von Farbe A und dann alle
> von Farbe B. Für die Anzahl der Tulpen von Farbe A gibt es
> dann die Möglichkeiten 1, 2, ... , 14. So kommt die 14 in
> die Welt.

Könnte ich nicht doch vielleicht eine Formel anwenden?

Wenn ich davon ausgehe, dass

1. Die erste Tulpe Farbe-1 hat und die zweite Tulpe Farbe-2 hat, sind auf jeden Fall beide Farben vertreten. Es bleiben noch 13 Ziehungen.

2. Wenn ich die verbleibenden Ziehungen als Urnenexperiment auffasse, bei dem es zwei unterschiedliche Kugeln gibt, von denen ich jeweils eine Kugel ziehe und wieder zurücklege, dann ist n=2 und k=13

=> Anzahl Kombinationen mit Zurücklegen, Reihenfolge unwichtig  

[mm] C_{n,k} [/mm] =  [mm] \vektor{n + k-1 \\ k} [/mm]

[mm] C_{n,k} [/mm] = [mm] \vektor{2 + 13 - 1 \\ 13} [/mm] = [mm] \vektor{14 \\ 13} [/mm] = 14


?

Bezug
                        
Bezug
Tulpenstrauß: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Di 26.10.2021
Autor: statler


> Könnte ich nicht doch vielleicht eine Formel anwenden?
>  
> Wenn ich davon ausgehe, dass
>
> 1. Die erste Tulpe Farbe-1 hat und die zweite Tulpe Farbe-2
> hat, sind auf jeden Fall beide Farben vertreten. Es bleiben
> noch 13 Ziehungen.
>  
> 2. Wenn ich die verbleibenden Ziehungen als Urnenexperiment
> auffasse, bei dem es zwei unterschiedliche Kugeln gibt, von
> denen ich jeweils eine Kugel ziehe und wieder zurücklege,
> dann ist n=2 und k=13
>  
> => Anzahl Kombinationen mit Zurücklegen, Reihenfolge
> unwichtig  
>
> [mm]C_{n,k}[/mm] =  [mm]\vektor{n + k-1 \\ k}[/mm]
>  
> [mm]C_{n,k}[/mm] = [mm]\vektor{2 + 13 - 1 \\ 13}[/mm] = [mm]\vektor{14 \\ 13}[/mm] =
> 14
>
> ?

So geht es auch, vor allen Dingen dann, wenn man auch mal die selten genutzte Formel für 'mit Zurücklegen, ohne Reihenfolge' einsetzen möchte.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]