www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Tschebyscheff - Welche Ungleic
Tschebyscheff - Welche Ungleic < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff - Welche Ungleic: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 13:41 So 17.07.2005
Autor: happy13

Hallo,

hab da so meine Probleme mit den Ungleichungen von Tschebbyscheff! Eigentlich sollte der Aufgabentyp ja nicht so schwer zu lösen sein, aber ich komm nicht darauf welches System oder welcher Trick dahinter steckt.

Woher weiss ich welche der beiden Tschebyscheff Ungleichungen ich nehmen soll?

Den Sinn der Tschebyscheff Ungleichungen hab ich denke ich verstanden: Die Wahrscheinlichkeit, dass der Erwartungswert der Grundgesamtheit in einem Intervall liegt soll z.B. 95 % sein. Man sucht dann eben genau diesen Intervall. Richtig?

Z.B. folgende Aufgabe:

Der Produktionsleiter einesAutomobilkonzernsstellt in einer Stichprobenuntersuchung von 500 Autos fest, dass 24 Autos fehlerhaft lackiert sind.

Bestimmen sie unter Verwendung einer geeigneten Varianzschätzung ein 95 % Konfiidenzintervallfür den Anteil der fehlerhaft lackierten Autos der Gesamtproduktion.

Woher weiss ich welche Ungleichung ich nehmen muss?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=19569

        
Bezug
Tschebyscheff - Welche Ungleic: Gelöstes Beispiel
Status: (Antwort) fertig Status 
Datum: 23:42 So 17.07.2005
Autor: BeniMuller

Hallo happy13

Für das Vertrauensintervall (Konfidenzintervall) gibt es eine ziemlich kompliziert aussehende Formel:

linke, untere Grenze

[mm] \bruch{1}{n+z_\alpha^2} \ (k \ + \ \bruch{z_\alpha^2}{2}) \ - \ z_\alpha \wurzel{\bruch{k(n-k)}{n} \ + \ \bruch{z_\alpha^2}{4} }[/mm]

rechte, obere Grenze

[mm] \bruch{1}{n+z_\alpha^2} \ (k \ + \ \bruch{z_\alpha^2}{2}) \ + \ z_\alpha \wurzel{\bruch{k(n-k)}{n} \ + \ \bruch{z_\alpha^2}{4} }[/mm]

[mm]n \ = \ [/mm] Anzahl Autos [mm] \ = \ 500 [/mm]
[mm]k \ = \ [/mm] Anzahl fehlerhaft lakiert [mm] \ = \ 24[/mm]
[mm]z_\alpha \ = \ [/mm] kritischer Wert bei 95% [mm] \ = \ 1.96 [/mm]

Wenn Du diese Zahlen einsetzt, bekommst Du die Grenzen des Vertrauensintervalls.

Hoffentlich hilft das weiter.

Gruss aus Zürich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]