www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Tschebyscheff - Polynom
Tschebyscheff - Polynom < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff - Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 08.12.2019
Autor: Drake_ij

Aufgabe
Sei $n [mm] \in \mathbb{N}_{0}$. [/mm] Für $x [mm] \in [/mm] [-1, 1 ]$ definieren wir das Tschebyscheff - Polynom

[mm] $T_{n}(x) [/mm] := cos(n [mm] \cdot [/mm]  arccos (x))$.


Zeigen Sie:



a) [mm] $T_{0}(x) [/mm] = 1, [mm] T_{1}(x) [/mm] = x$, und für $n [mm] \ge [/mm] 1$ gilt die folgende Rekursion:

[mm] $T_{n + 1}(x) [/mm] = 2x [mm] T_{n}(x) [/mm] - [mm] T_{n - 1}(x)$ [/mm]



b) [mm] $T_{n}$ [/mm] ist ein Polynom vom Grad $n$ und es gilt [mm] $\vert T_{n}(x) \vert \le [/mm] 1$

c) Für $k [mm] \in \mathbb{Z}$ [/mm] gilt: [mm] $T_{n} \left ( cos \left ( \frac{k \pi}{n} \right ) \right [/mm] ) = (- [mm] 1)^{k}$ [/mm]

d) Für $k [mm] \in \mathbb{Z}$ [/mm] gilt: [mm] $T_{n} \left ( cos \left ( \frac{(2k + 1) \pi}{2n} \right ) \right [/mm] ) = 0$


e) Sei [mm] $\omega: [/mm] (-1, 1) [mm] \rightarrow \mathbb{R}$ [/mm] gegeben durch [mm] $\omeg(x) [/mm] = [mm] \frac{1}{\sqrt{1 - x^{2}}}$. [/mm]

Zeigen Sie, dass [mm] $(T_{j}, T_{k})_{\omega} [/mm] = [mm] \begin{cases} \pi, j = k = 0 \\ \frac{\pi}{2}, j = k \neq 0 \\ 0,\; \text{sonst} \end{cases}$ [/mm]  


[mm] $\forall [/mm] j, k [mm] \in \{0,1, \ldots, n \}$ [/mm]

Hallo, Freunde der Mathematik.


Ich habe Probleme bei a), b) und e).


Die c) und d) waren kein Problem. Die habe ich so gelöst:




Zu c):


[mm] $T_{n} \left ( cos \left ( \frac{k \pi}{n} \right ) \right [/mm] ) = cos [mm] \left ( n \cdot arccos \left ( cos \left ( \frac{k \pi}{n} \right ) \right ) \right [/mm] )  = cos [mm] \left ( n \cdot \frac{k \pi}{n} \right [/mm] ) = cos(k [mm] \pi) [/mm] = ( - [mm] 1)^{k}$ [/mm]



Zu d):

[mm] $T_{n} \left ( cos \left ( \frac{(2k + 1) \pi}{2n} \right ) \right [/mm] ) =  cos [mm] \left ( n \cdot arccos \left ( cos \left ( \frac{(2k + 1)\pi}{2n} \right ) \right ) \right [/mm] ) =  cos [mm] \left ( n \cdot \frac{(2k + 1)\pi}{2n} \right [/mm] ) = cos [mm] \left ( \frac{(2k + 1)\pi}{2} \right [/mm] ) = cos [mm] \left (k \pi + \frac{\pi}{2} \right [/mm] )= 0$


Zu a):


Bei der a) weiß ich nicht, wie ich die Aussage zeigen soll.
Ich habe mir überlegt, das durch Induktion zu zeigen, aber komme nicht besonders weit.


Induktionanfang
_____________


Sei $n = 1$. Dann:

[mm] $T_{ 1 + 1} [/mm] (x) = [mm] T_{2} [/mm] = 2x [mm] T_{1}(x) [/mm] - [mm] T_{0}(x) [/mm] = 2x [mm] \cdot [/mm] x - 1 = [mm] 2x^{2} [/mm] - 1$


Und es ist [mm] $T_{2} [/mm] (x) = cos (2 [mm] \cdot [/mm] arccos(x)) = ?$



Also, ich hänge schon hier fest und ich habe irgendwie auch Zweifel, dass Induktion in diesem Fall das richtige wäre, da ich wir eine ähnliche Aussage mit den Legendre - Polynomen anders gezeigt haben.



Hat jemand Tipps?


Zu b):

Bei der b) bin ich auch ratlos. Wieso kann man vom einem Polynom vom Grad $n$ reden, wenn [mm] $T_{n}$ [/mm] eine trigonometrische Funktion ist ?


Und dass [mm] $\vert T_{n}(x) \vert \le [/mm] 1$ gilt, ist, wenn ich mir mal den Spruch erlauben darf, trivial.

Da $x [mm] \in [/mm] [-1, 1]$ gilt, ist der Wertebereich vom arccos das Intevall $[0, [mm] \pi]$. [/mm] Also haben wir als Argument im Cosinus $n [mm] \cdot [/mm] y$ $(y [mm] \in [/mm] [0, [mm] \pi])$. [/mm] Unser Argument ist reell. Und für reelle Argumente gilt [mm] $\vert [/mm] cos(x) [mm] \vert \le [/mm] 1$.

Oder erwartet man hier einen anderen Beweis? Wüsste sonst nicht, wie ich das anders beweisen soll.



Zu e):

Der ersten Fall meine ich behandelt zu haben.


Sei $j = k = 0$. Dann [mm] $(T_{j}, T_{k})_{\omega} [/mm]  = [mm] \int_{a}^{b} \omega(x) \cdot T_{0}(x)^{2} [/mm] dx = [mm] \int_{a}^{b} \omega(x) \cdot 1^{2} [/mm] dx = [mm] \int_{a}^{b} \omega(x) \cdot 1^{2} [/mm] dx = [mm] \int_{a}^{b} \frac{1}{\sqrt{1 - x^{2}}} \cdot 1^{2} [/mm] dx  =  [arccos(x) + [mm] c]^{a}_{b}$ [/mm]

Die Grenzen sind $a = -1$ und $b = 1$ und wir haben:

[mm] $(T_{j}, T_{k})_{\omega} [/mm] = [arccos(x) + [mm] c]^{- 1}_{1} =\pi [/mm] - 0 = [mm] \pi$ [/mm]




Der zweite Fall ist etwas problematischer:


Sei $j = k [mm] \neq [/mm] 0$.Dann ist


[mm] $(T_{j}, T_{k})_{\omega} [/mm]  = [mm] \int_{a}^{b} \omega(x) \cdot T_{j}(x) T_{k}(x) \cdot [/mm] dx  = [mm] \int_{a}^{b} \omega(x) \cdot T_{k}(x)^{2} [/mm]  dx =   [mm] \int_{a}^{b} \frac{1}{\sqrt{1 - x^{2}}} \cdot [/mm]  cos(k [mm] \cdot [/mm]  arccos [mm] (x))^{2} [/mm] dx = [mm] \int_{a}^{b} \frac{cos(k \cdot arccos (x))^{2}}{\sqrt{1 - x^{2}}} [/mm]  dx$



Muss man das wirklich per Hand integrieren, oder gibt es einen leichteren Weg ? Ich habe das Integral mal im Rechner eingegeben und dann kommt etwas ganz anderes heraus, als [mm] $\frac{\pi}{2}$. [/mm]




Und für den Fall $ j [mm] \neq [/mm] k [mm] \neq [/mm] 0$ habe ich:


[mm] $(T_{j}, T_{k})_{\omega} [/mm]  = [mm] \int_{a}^{b} \omega(x) \cdot T_{j}(x) T_{k}(x) \cdot [/mm] dx = [mm] \int_{a}^{b} \frac{1}{\sqrt{1 - x^{2}}} \cdot [/mm]  cos(j  [mm] \cdot [/mm]  arccos (x)) [mm] \cdot [/mm]  cos(k [mm] \cdot [/mm]  arccos (x))dx =  [mm] \int_{a}^{b} \frac{1}{\sqrt{1 - x^{2}}} \cdot \frac{1}{2} \left ( cos(j \cdot arccos (x) - k \cdot arccos (x)) + cos(j \cdot arccos (x) + k \cdot arccos (x)) \right [/mm] ) dx$


Aber auch hier habe ich Probleme, die Stammfunktion zu bestimmen.


Hat jemand eine Idee?


Danke schon einmal für eure Mühe




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tschebyscheff - Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 08.12.2019
Autor: Gonozal_IX

Hiho,


> Ich habe Probleme bei a), b) und e).

Dabei sind das doch die einfachen Teilaufgaben ;-)

> Die c) und d) waren kein Problem. Die habe ich so gelöst:

[ok]

Zur a)
Betrachte mal [mm] $T_{n+1}(x) [/mm] + [mm] T_{n-1}$ [/mm] und verwende das Additionstheorem

[mm] $\cos x+\cos y=2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$ [/mm]

Fertig ist der Spaß, wenn da [mm] $2xT_n$ [/mm] herauskommt…

Zur b)
Du hattest ja bereits selbst geschrieben:

> Und dass $ [mm] \vert T_{n}(x) \vert \le [/mm] 1 $ gilt, ist, wenn ich mir mal den Spruch erlauben darf, trivial.

Korrekt, es ist [mm] $|T_n(x)| [/mm] = [mm] |\cos(\ldots)| \le [/mm] 1$, mehr gibt es dazu nicht zu sagen.

Ebenso trivial ist aber, wo du zweifelst:

> Wieso kann man vom einem Polynom vom Grad n reden, wenn $ [mm] T_{n} [/mm] $ eine trigonometrische Funktion ist ?

Schau dir die Rekursionsvorschrift an, es gilt doch:
$ [mm] T_{n + 1}(x) [/mm] = 2x [mm] T_{n}(x) [/mm] - [mm] T_{n - 1}(x) [/mm] $

Ist nun [mm] $T_n$ [/mm] ein Polynom vom Grad n und [mm] $T_{n-1}$ [/mm] eins vom Grad (n-1) so ist [mm] $T_{n+1}$ [/mm]  eben offensichtlich eins vom Grad (n+1)… trivial eigentlich.
(Oder wenn das jetzt zu schnell war:
- Ist [mm] T_n [/mm] ein Polynom vom Grad n, so ist P = [mm] 2xT_n [/mm] eines vom Grad (n+1)
- Ist [mm] T_{n-1} [/mm] ein Polynom vom Grad n-1 so ist P - [mm] T_{n-1} [/mm] dann weiterhin eines vom Grad n)

Und da die Behauptung für [mm] T_0 [/mm] und [mm] T_1 [/mm] gilt, folgt der Rest sofort per Induktion.
Auch wenn es komisch klingt… manchmal weniger denken ;-)

Das beste, die e), heben wir uns zum Schluss auf :-)

Gruß,
Gono.

Bezug
                
Bezug
Tschebyscheff - Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 So 08.12.2019
Autor: Drake_ij

Ah ja, am Additionstheorem habe ich nicht gedacht. Das macht es ja erheblich einfacher! :-)

Habe mit deinen Tipps mal die $a)$ und $b)$ gemacht. Ich denke es passt :-)




Zu a)



Es ist:


[mm] $T_{n + 1}(x) [/mm] + [mm] T_{n - 1}(x) [/mm] = cos [mm] (\; [/mm] (n+ 1) [mm] \cdot arccos(x)\; [/mm] ) + cos [mm] (\; [/mm] (n - 1) [mm] \cdot arccos(x)\; [/mm] ) = 2 [mm] \cdot cos\left ( \frac{(n + 1) \cdot arccos(x) + (n - 1) \cdot arccos(x)}{2} \right [/mm] ) [mm] \cdot cos\left ( \frac{(n + 1) \cdot arccos(x) - (n - 1) \cdot arccos(x)}{2} \right [/mm] )$

$= 2 [mm] \cdot cos\left ( \frac{ arccos(x) (n + 1 + (n - 1))}{2} \right [/mm] ) [mm] \cdot cos\left ( \frac{ arccos(x) (n + 1 - (n - 1))}{2} \right [/mm] ) = 2 [mm] \cdot cos\left ( \frac{ arccos(x) 2n}{2} \right [/mm] ) [mm] \cdot cos\left ( \frac{ arccos(x) 2)}{2} \right [/mm] )  = 2 [mm] \cdot cos\left ( n \cdot arccos(x) \right [/mm] ) [mm] \cdot cos\left ( arccos(x) \right [/mm] ) $

$ =  2 [mm] \cdot cos\left ( n \cdot arccos(x) \right [/mm] ) [mm] \cdot cos\left ( arccos(x) \right [/mm] ) = 2x [mm] T_{n}(x)$ [/mm]



Zu b)



Induktionsanfang
______________

Sei $n = 1$.

Es ist [mm] $T_{1}(x) [/mm] = x$ und offensichtlich ein Polynom vom Grad 1.


Induktionsbehauptung
___________________

[mm] $\exists [/mm] n [mm] \in \mathbb{N}: T_{n}(x)\; \text{ist ein Polynom vom Grad n}$ [/mm]



Induktionsschritt
___________________


Wir müssen zeigen, dass wenn [mm] $T_{n}(x)$ [/mm] ein Polynom vom Grad $n$ ist, dann ist [mm] $T_{n + 1}(x)$ [/mm] ein Polynom vom Grad $n + 1$.

Nach a) gilt aber: [mm] $T_{n + 1}(x) [/mm] = 2x [mm] T_{n}(x) [/mm] - [mm] T_{n - 1}(x)$. [/mm]

Da $2x [mm] T_{n}(x) [/mm] $ ein Polynom vom Grad $n + 1$ ist, ist auch  [mm] $T_{n + 1}(x) [/mm] = 2x [mm] T_{n}(x) [/mm] - [mm] T_{n - 1}(x)$ [/mm] ein Polynom vom Grad $ n + 1$.




Passt es ?




Bei der e) komme ich leider immer noch nicht ganz weiter!



mfg, Drake



Bezug
                        
Bezug
Tschebyscheff - Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 08.12.2019
Autor: Gonozal_IX

Hiho,

> Induktionsanfang
>  ______________
>  
> Sei [mm]n = 1[/mm].
>  
> Es ist [mm]T_{1}(x) = x[/mm] und offensichtlich ein Polynom vom Grad
> 1.

Du brauchst aber zwei Elemente als Anfang, da in er Rekursionsformel für [mm] T_{n+1} [/mm] sowohl [mm] T_n [/mm] als auch [mm] T_{n-1} [/mm] vorkommt.

> Induktionsbehauptung
>  ___________________
>  
> [mm]\exists n \in \mathbb{N}: T_{n}(x)\; \text{ist ein Polynom vom Grad n}[/mm]

Und [mm] T_{n-1} [/mm] ist Polynom vom Grad (n-1)

> Induktionsschritt
>  ___________________
>  
>
> Wir müssen zeigen, dass wenn [mm]T_{n}(x)[/mm] ein Polynom vom Grad
> [mm]n[/mm] ist, dann ist [mm]T_{n + 1}(x)[/mm] ein Polynom vom Grad [mm]n + 1[/mm].
>  
> Nach a) gilt aber: [mm]T_{n + 1}(x) = 2x T_{n}(x) - T_{n - 1}(x)[/mm].
>
> Da [mm]2x T_{n}(x)[/mm] ein Polynom vom Grad [mm]n + 1[/mm] ist, ist auch  
> [mm]T_{n + 1}(x) = 2x T_{n}(x) - T_{n - 1}(x)[/mm] ein Polynom vom
> Grad [mm]n + 1[/mm].

> Passt es ?

Bis auf die Anmekungen: Ja.

> Bei der e) komme ich leider immer noch nicht ganz weiter!

Substituiere mal $z = [mm] \arccos(x)$ [/mm] und beachte $(arccos(x))' = - [mm] \frac{1}{\sqrt{1-x^2}}$ [/mm]

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]