www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Trigonometrische Gleichungen
Trigonometrische Gleichungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 27.01.2010
Autor: Peerless

Aufgabe
Bestimmen Sie für das angegebene Intervall die Lösungsmenge.
sin(4x)=0
[0;/pi]

Hey :)
Wir haben in Mathe gerade die Trigonometrische Gleichungen (Klasse 10 - Gymnasium).
Ich war leider die letzte Woche krank und habe das Thema überhaupt nicht verstanden. Wir hatten bisher nur die Sinusfunktion. Vielleicht kann mir jemand damit helfen. Wär echt toll! :)
Lg Peerless

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mi 27.01.2010
Autor: Steffi21

Hallo, du kennst also schon die Funktion f(x)=sin(x), mit der Periode [mm] 2\pi [/mm] und den Nullstellen [mm] 0,\pi, 2\pi, [/mm] im Intervall [mm] [0;2\pi] [/mm] skizziere dir diese Funktion mit der Schablone, der Faktor 4 bewirkt eine Veränderung der Peride [mm] \bruch{2\pi}{4}=\bruch{\pi}{2} [/mm] skizziere dir auch die Funktion f(x)=sin(4x) jetzt sollten die fünf Nullstellen für dich lösbar sein, Steffi

Bezug
                
Bezug
Trigonometrische Gleichungen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 28.01.2010
Autor: Peerless

Ehrlich gesagt ist noch nicht alles klar...
Ich hab mir die Funktion mal aufgezeichnet. Sie ist zusammengestaucht, aber ich sehe nur 4 Nullstellen. Eine bei 0, eine bei ca. 0,85, eine bei ca 1,65 und eine bei ca. 2,6...
Und weil das Intervall ja von 0 bis /pi geht, ist dann bei 3,14... schluss!
Ist das richtig so?
Und kann man die Nullstellen ausrechnen oder muss man sie ablesen?
Und dass mit (pi/2) hab ich auch noch nicht ganz verstanden...
gruß

Bezug
                        
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Do 28.01.2010
Autor: abakus


> Ehrlich gesagt ist noch nicht alles klar...
>  Ich hab mir die Funktion mal aufgezeichnet.  

Hallo,
das ist doch schon mal eine gute Idee, wenn es insgesamt noch klemmt.
Dann bleibe mal nicht beim aufzeichnen von sin(4x), sondern setze zum Vergleich die Funktion y=sin(x) noch dazu (von der du sicher etwas mehr weißt).
Gehe dann mal vom Ursprung aus (da hat sin(x) eine Nullstelle) nach rechts.
Wo hat sin(x) die nächste Nullstelle? Warum hat sin(4x) diese erste Nulltelle nach dem Ursprung schon viel zeitiger? Und wo genau (bitte nicht so ein Näherungswert wie 0,86)?
Wo haben beide Funktionen die erste gemeinsame Nullstelle nach x=0?
Gruß Abakus




> Sie ist
> zusammengestaucht, aber ich sehe nur 4 Nullstellen. Eine
> bei 0, eine bei ca. 0,85, eine bei ca 1,65 und eine bei ca.
> 2,6...
>  Und weil das Intervall ja von 0 bis /pi geht, ist dann bei
> 3,14... schluss!
>  Ist das richtig so?
>  Und kann man die Nullstellen ausrechnen oder muss man sie
> ablesen?
>  Und dass mit (pi/2) hab ich auch noch nicht ganz
> verstanden...
>  gruß


Bezug
        
Bezug
Trigonometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Do 28.01.2010
Autor: Peerless

Also ich denke mal, dass die Zahl 4 die Funktion zusammenstaucht (wie bei Parabeln) und dass die erste Nullstelle deswegen schon früher kommt. Und in dem Abstand, in dem sin(x) nur einen Hügel hat, hat sin(4x) vier Stück.
Und zu dem mit der Genauigkeit: Woher sehe ich das denn? Meine Vermutung: Eine Periode dauert bei sin(x) genau 3,14. Kann man dann die Nullstellen von sin(4x) errechnen, indem man 4/pi rechnet?


Bezug
                
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Do 28.01.2010
Autor: abakus


> Also ich denke mal, dass die Zahl 4 die Funktion
> zusammenstaucht (wie bei Parabeln) und dass die erste
> Nullstelle deswegen schon früher kommt. Und in dem
> Abstand, in dem sin(x) nur einen Hügel hat, hat sin(4x)
> vier Stück.
>  Und zu dem mit der Genauigkeit: Woher sehe ich das denn?
> Meine Vermutung: Eine Periode dauert bei sin(x) genau 3,14.
> Kann man dann die Nullstellen von sin(4x) errechnen, indem
> man 4/pi rechnet?

Hallo,
3,14 ist genau so schlimm (auch noch "GENAU 3,14") , wie vorhin 0,86.
Machen wir folgenden Deal:
Wir rechnen [mm] "\pi [/mm] - 3,14" aus, multiplzieren dieses Ergebnis mit 1000000 Euro, und du zahlst mir diesen Betrag in bar aus.
Wenn [mm] \pi [/mm] GENAU 3,14 wäre, würde [mm] \pi [/mm] - 3,14=0 gelten, und du hättest nichts zu befürchten. Ansonsten: Spare schon mal...

Also: die Nullstelle ist nicht genau bei 3,14, sondern nur ungefähr. Genau ist sie bei Pi.
Es gilt [mm] sin(\pi)=0. [/mm] Den Wert [mm] \pi [/mm] erhält man auch, wenn man [mm] 4*\bruch{\pi}{4} [/mm] rechnet.
Also hat sin(4x) bereits an der Stelle [mm] x=(genau)\bruch{\pi}{4} [/mm] seine erste Nullstelle. Alle weiteren folgen wiederum in Abständen von [mm] \bruch{\pi}{4}. [/mm]
Gruß Abakus

>  


Bezug
                        
Bezug
Trigonometrische Gleichungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:20 Do 28.01.2010
Autor: Peerless

Die 1592,65359€ behalte ich doch dann lieber selber ;)
Aber den Rest hab ich verstanden, vielen Dank fürs Erklären :)
Aber eine Frage hätte ich noch, ist das dann genau das gleiche bei cos und tan?
Wir hatten nämlich noch die Aufgabe cos(hoch 2)x + cos x = 0
cos(hoch 2)x kann man ja umschreiben zu (cos [mm] x)^2 [/mm] oder? Und dann kommt bei mir so ein komischer Graph raus der zwar periodisch ist, aber nicht aussieht wie eine sinusfunktion...

Bezug
                                
Bezug
Trigonometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Do 28.01.2010
Autor: abakus


> Die 1592,65359€ behalte ich doch dann lieber selber ;)
>  Aber den Rest hab ich verstanden, vielen Dank fürs
> Erklären :)
>  Aber eine Frage hätte ich noch, ist das dann genau das
> gleiche bei cos und tan?
> Wir hatten nämlich noch die Aufgabe cos(hoch 2)x + cos x =
> 0
>  cos(hoch 2)x kann man ja umschreiben zu (cos [mm]x)^2[/mm] oder?

Ja. Und dann lohnt es sich, cos(x) in der linken Seite deiner Gleichung auszuklammern.
Ein Produkt ist Null, wenn...
Gruß Abakus

> Und dann kommt bei mir so ein komischer Graph raus der zwar
> periodisch ist, aber nicht aussieht wie eine
> sinusfunktion...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]