www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Trigonometrische Gleichung
Trigonometrische Gleichung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 17.11.2009
Autor: kagie

Aufgabe
Bestimmen Sie alle reelen Lösungen der folgenden trigonometrischen Gleichungen:
a) sin(2x)=cosx ( Nutzen Sie Additionstherme )
b) 2sin2x=sinx+1 ( Substituieren sie sinx)
Geben Sie für beide Aufgaben die Lösungsmengen an.

Hallo.
Leider fehlt mir jeglicher logischer Ansatz.
Zu A )
cosx ist ja 2sin(x) cos (x)
Doch wie bringe ich das mit sin(2x ) in Verbindung.
Sind 2 (x) ist ja sin (x +x ).
Mir fehlt da der Ansatz.
zu B )
da ist mir bekannt, dass sin2x+cos2x= 1 sind
cos2x ist ja demzufolge 1-sin2x.
Wäre um jeden Tipp dankbar.
Danke :-)
LG
Kagie

        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 17.11.2009
Autor: fred97


> Bestimmen Sie alle reelen Lösungen der folgenden
> trigonometrischen Gleichungen:
>  a) sin(2x)=cosx ( Nutzen Sie Additionstherme )
>  b) 2sin2x=sinx+1 ( Substituieren sie sinx)

Hier muß wohl $2sin^2x=sinx+1$ lauten , stimmts ?


>  Geben Sie für beide Aufgaben die Lösungsmengen an.
>  Hallo.
>  Leider fehlt mir jeglicher logischer Ansatz.
> Zu A )
>  cosx ist ja 2sin(x) cos (x)
>  Doch wie bringe ich das mit sin(2x ) in Verbindung.
>  Sind 2 (x) ist ja sin (x +x ).
>  Mir fehlt da der Ansatz.
>  zu B )
>  da ist mir bekannt, dass sin2x+cos2x= 1 sind
>  cos2x ist ja demzufolge 1-sin2x.
>  Wäre um jeden Tipp dankbar.


Zu a)Das Additionstheorem liefert: $sin(2x) = 2sin(x)*cos(x)$

Somit:

  $sin(2x)=cos(x) [mm] \gdw [/mm] 2sin(x)*cos(x)= cos(x) [mm] \gdw [/mm] cos(x)*(2sin(x)-1) = 0 [mm] \gdw [/mm] cos(x) = 0$ oder $ sin(x) =1/2$


Zu b)
   Folge dem Hinweis und setze $t= sin(x)$. Dann:

            $2sin^2x=sinx+1 [mm] \gdw t^2=t+1$ [/mm]

Hilft das ?

FRED


>  Danke :-)
>  LG
>  Kagie


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]