www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Trigonometrische Gleichung
Trigonometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Fr 09.01.2009
Autor: ChopSuey

Aufgabe
$\ [mm] \cos \bruch{x}{2} [/mm] - [mm] \cos [/mm] x = 1 $

Hallo,
ich wollte eigentlich bloß gerne wissen, ob meine Lösung stimmt. Würde mich über Hinweise freuen, wenn dem nicht so ist.

$\ [mm] \cos \bruch{x}{2} [/mm] - [mm] \cos [/mm] x = 1 $

$\ [mm] \cos [/mm] x = [mm] \cos^2 \bruch{x}{2} [/mm] - [mm] \sin^2 \bruch{x}{2} [/mm] $

$\ [mm] \cos \bruch{x}{2} [/mm] - [mm] (\cos^2 \bruch{x}{2} [/mm] - [mm] \sin^2 \bruch{x}{2}) [/mm]  = 1 $

$\ [mm] \cos \bruch{x}{2} [/mm] - [mm] \cos^2 \bruch{x}{2} [/mm] + [mm] \sin^2 \bruch{x}{2} [/mm]  = 1 $

$\ [mm] \sin^2 \bruch{x}{2} [/mm] =  1 - [mm] \cos^2 \bruch{x}{2} [/mm] $

$\ [mm] \cos \bruch{x}{2} [/mm] - [mm] \cos^2 \bruch{x}{2} [/mm] + 1 - [mm] \cos^2 \bruch{x}{2} [/mm]  = 1 $

Substitution mit $\ y = [mm] \cos \bruch{x}{2} [/mm] $


$\ [mm] y-y^2 [/mm] + 1 [mm] -y^2 [/mm] = 1 [mm] \gdw -2y^2+y [/mm] = 0$

$\ y(-2y+1) = 0 $

$\ [mm] \Rightarrow {\blue{y_{1}}} [/mm] = 0 $

$\ 2y = 1 $

$\ [mm] \Rightarrow {\blue{y_{2}}} [/mm] = [mm] \bruch{1}{2} [/mm] $

$\ [mm] y_{1} [/mm] = [mm] \cos \bruch{x}{2} [/mm] = 0 [mm] \Rightarrow x_{1} [/mm] = [mm] 2(\bruch{\pi}{2}+k\pi) [/mm] $

$\ [mm] y_{2} [/mm] = [mm] \cos \bruch{x}{2} [/mm] = [mm] \bruch{1}{2} \Rightarrow x_{2} [/mm] = [mm] 2(\bruch{\pi}{3}+2k\pi) [/mm] $

Würde mich über eine Antwort sehr freuen.
Vielen Dank

Grüße
ChopSuey

        
Bezug
Trigonometrische Gleichung: noch nicht alle Lösungen
Status: (Antwort) fertig Status 
Datum: 20:03 Fr 09.01.2009
Autor: Al-Chwarizmi


> [mm]\ \cos \bruch{x}{2} - \cos x = 1[/mm]

>  Hallo,
>  ich wollte eigentlich bloß gerne wissen, ob meine Lösung
> stimmt. Würde mich über Hinweise freuen, wenn dem nicht so
> ist.
>  
> [mm]\ \cos \bruch{x}{2} - \cos x = 1[/mm]
>
> [mm]\ \cos x = \cos^2 \bruch{x}{2} - \sin^2 \bruch{x}{2}[/mm]      [ok]
>  
> [mm]\ \cos \bruch{x}{2} - (\cos^2 \bruch{x}{2} - \sin^2 \bruch{x}{2}) = 1[/mm]      [ok]
>
> [mm]\ \cos \bruch{x}{2} - \cos^2 \bruch{x}{2} + \sin^2 \bruch{x}{2} = 1[/mm]      [ok]
>
> [mm]\ \sin^2 \bruch{x}{2} = 1 - \cos^2 \bruch{x}{2}[/mm]      [ok]

   zuerst habe ich zur letzten Gleichung ein [notok] gesetzt:
   du solltest jeweils deutlich machen, ob du die
   umzuformende Gleichung meinst oder eine
   Formel, die du zu deren Umformung verwendest !
  

> [mm]\ \cos \bruch{x}{2} - \cos^2 \bruch{x}{2} + 1 - \cos^2 \bruch{x}{2} = 1[/mm]      [ok]
>  
> Substitution mit [mm]\ y = \cos \bruch{x}{2}[/mm]
>  
>
> [mm]\ y-y^2 + 1 -y^2 = 1 \gdw -2y^2+y = 0[/mm]      [ok]
>
> [mm]\ y(-2y+1) = 0[/mm]      [ok]
>  
> [mm]\ \Rightarrow {\blue{y_{1}}} = 0[/mm]      [ok]
>  
> [mm]\ 2y = 1[/mm]      [ok]
>  
> [mm]\ \Rightarrow {\blue{y_{2}}} = \bruch{1}{2}[/mm]      [ok]
>  
> [mm]\ y_{1} = \cos \bruch{x}{2} = 0 \Rightarrow x_{1} = 2(\bruch{\pi}{2}+k\pi)[/mm]      [ok]
>  
> [mm]\ y_{2} = \cos \bruch{x}{2} = \bruch{1}{2} \Rightarrow x_{2} = 2(\bruch{\pi}{3}+2k\pi)[/mm]

Diese Lösungen stimmen zwar, aber es sind noch nicht alle.
Beachte, dass  [mm] cos(\alpha)=\bruch{1}{2} [/mm] zwei "Haupt"-Lösungen besitzt !

>  
> Würde mich über eine Antwort sehr freuen.
>  Vielen Dank
>  
> Grüße
>  ChopSuey


LG    Al-Chwarizmi


Bezug
                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Fr 09.01.2009
Autor: ChopSuey

Hallo Al-Chwarizmi :-)

Danke für Deinen Hinweis! Du hast natürlich recht, das hab ich ganz vergessen.

Es fehlt noch die Lösung für $\ x = [mm] -x_{0}+2k\pi [/mm] $

Also:

$ \ [mm] y_{1} [/mm] = [mm] \cos \bruch{x}{2} [/mm] = 0 [mm] \Rightarrow \overline{x_{1}} [/mm] = [mm] 2(-\bruch{\pi}{2}+k\pi) [/mm] $  

$ \ [mm] y_{2} [/mm] = [mm] \cos \bruch{x}{2} [/mm] = [mm] \bruch{1}{2} \Rightarrow \overline{x_{2}} [/mm] = [mm] 2(-\bruch{\pi}{3}+2k\pi) [/mm] $

Das sollte dann stimmen.
Vielen Dank für Deine Hilfe!
Grüße
ChopSuey

Bezug
                        
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Fr 09.01.2009
Autor: Al-Chwarizmi


> Hallo Al-Chwarizmi :-)
>  
> Danke für Deinen Hinweis! Du hast natürlich recht, das hab
> ich ganz vergessen.
>  
> Es fehlt noch die Lösung für [mm]\ x = -x_{0}+2k\pi[/mm]
>
> Also:
>  
> [mm]\ y_{1} = \cos \bruch{x}{2} = 0 \Rightarrow \overline{x_{1}} = 2(-\bruch{\pi}{2}+k\pi)[/mm]


diese Lösungen hattest du eigentlich schon, da du hier
die Periode [mm] \pi [/mm] genommen hast ...


> [mm]\ y_{2} = \cos \bruch{x}{2} = \bruch{1}{2} \Rightarrow \overline{x_{2}} = 2(-\bruch{\pi}{3}+2k\pi)[/mm]    [ok]
>  
> Das sollte dann stimmen.
>  Vielen Dank für Deine Hilfe!
>  Grüße
>  ChopSuey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]