www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Trigonometrie-Goniometrie
Trigonometrie-Goniometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie-Goniometrie: Formelherleitung
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 03.01.2006
Autor: an-pleines

Aufgabe
Hallo ich habe hier ein paar Formeln zur Geometrie aus dem Buch: Taschenbuch Mathematischer Formeln von Bartsch Fachbuchverlag Leipzig.
Ich habe ich dort auf S146 der 20 Aufl. etwas über Winkelbeziehungen im Dreieck gefunden und suche nun die Herleitung dieser Formeln.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  
[mm] sin 2\alpha+sin2 \beta+sin2 \gamma=2x(sin \alpha x sin \beta x sin \gamma)[/mm]
kann mir da jemand weiterhelfen? Ich suche Literatur in der diese Beziehungen hergeleitet werden.

[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Trigonometrie-Goniometrie: kleine Herleitung
Status: (Antwort) fertig Status 
Datum: 17:08 Di 03.01.2006
Autor: moudi

Hallo an-pleines

Ich weiss zwar keine Literatur, kann dir diese Formel aber gerne herleiten:

[mm] $\sin(2\alpha)+\sin(2\beta)+\sin(2\gamma)= 2\sin(\alpha+\beta)\cos(\alpha-\beta)+\sin(2\gamma)$ [/mm]
Hier benutze ich das Additionstheorem [mm] $\sin(x)+\sin(y)=2\sin(\frac{x+y}2)\cos(\frac{x-y}2)$ [/mm] für [mm] $x=2\alpha$ [/mm] und [mm] $y=2\beta$. [/mm]

[mm] $\dots [/mm] = [mm] 2\sin(\pi-\gamma)\cos(\alpha-\beta)+\sin(2\gamma)$ [/mm]
Hier benutze ich die Winkelsumme im Dreieck [mm] $\alpha+\beta+\gamma=\pi$. [/mm]

[mm] $\dots [/mm] = [mm] 2\sin(\gamma)\cos(\alpha-\beta)+2\sin(\gamma)\cos(\gamma)$ [/mm]
Hier benutze ich, dass [mm] $\sin(\pi-x)=\sin(x)$ [/mm] und [mm] $\sin(2x)=2\sin(x)\cos(x)$. [/mm]

[mm] $\dots [/mm] = [mm] 2\sin(\gamma)\Bigl(\cos(\alpha-\beta)+\cos(\gamma)\Bigr)$ [/mm]
Hier klammere ich [mm] $2\sin(\gamma)$ [/mm] aus.

[mm] $\dots [/mm] = [mm] 4\sin(\gamma)\cos(\frac{\alpha-\beta+\gamma}2) \cos(\frac{\alpha-\beta-\gamma}2)$ [/mm]
Hier benutze ich das Additionstheorem [mm] $\cos(x)+\cos(y)=2\cos(\frac{x+y}2)\cos(\frac{x-y}2)$ [/mm] für [mm] $x=\alpha-\beta$ [/mm] und [mm] $y=\gamma$. [/mm]

[mm] $\dots [/mm] = [mm] 4\sin(\gamma)\cos(\frac{\pi-2\beta}2)\cos(\frac{2\alpha-\pi}2)$ [/mm]
Hier benutze ich wieder die Winkelsumms [mm] $\alpha+\beta+\gamma=\pi$ [/mm]

[mm] $\dots [/mm] = [mm] 4\sin(\gamma)\sin(\beta)\sin(\alpha)$ [/mm]
Hier benutze ich [mm] $\sin(x)=\cos(\frac{\pi}2-x)=\cos(x-\frac{\pi}2)$ [/mm]

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]