www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Trigonalisierbarkeit
Trigonalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonalisierbarkeit: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 14:40 Sa 15.01.2005
Autor: Fingolfin

Hi,
Ich beschäftige mich zur Zeit mir folgender Aufgabe und habe keine Idee.

Seien A,B [mm] \in Mat_n(K) [/mm] zwei trigonalisierbare Matritzen.
Ich soll jetzt beweisen oder wiederlegen, dass (a) die Summe A+B trigonalisierbar ist und (b) das Produkt AB trigonalisierbar ist.

Ich weiß, dass wenn das char. Polynom in Linearfaktoren zerfällt, die betreffende Matrix dann trigonalisierbar ist. Aber ich finde einfach keinen Ansatz.
Danke schonmal für die Hilfe. :D



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Trigonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 So 16.01.2005
Autor: Fingolfin

Hat keiner eine Idee?

Ich hab versucht zu AB ein Gegenbeispiel zu finden, habe aber bis jetzt keins gefunden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]