www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Trigamma-Funktion
Trigamma-Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigamma-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 19.04.2012
Autor: lyx

Hallo an alle,

Ich  habe diese Frage in keinen anderen Forum gestellt. Nachdem Ihr mir bei meiner letzten Frage so gut geholfen habt, habe ich eine weitere Frage zu meine Problem:

Ich habe eine Summe aus Trigammafunktionen [mm] \psi_1: [/mm]

[mm] \frac{I}{4d^2h}\left[ \psi_1 \left( \frac{1}{2}+\frac{n}{2}-\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}+\frac{n}{2}+\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}-\frac{n}{2}-\frac{h}{d}I\right) +\psi_1 \left(\frac{1}{2}-\frac{n}{2}+\frac{h}{d}I\right) \right] [/mm]      (*)

Dabei bezeichnet I die komplexe Einheit,
h und d sind Parameter mit h,d [mm] \in \IR_+ [/mm] , und n [mm] \in \IN. [/mm]

Nach den dahinterliegenden physikalischen Überlegungen müsste (*) identisch 0 sein. Ich versuche also zu zeigen, dass auch mathematisch gilt

(*) [mm] \equiv [/mm] 0

bisher habe ich versucht die Integraldarstellung der Trigammafunktion

[mm] \psi_1(z) [/mm] = - [mm] \int_0^1 \frac{x^{z-1} \ln x}{1-x}dx [/mm]

in (*) einzusetzen. Dies führt mich aber nicht zu den gewünschten Ergebnis.

Kann mir jemand von euch einen Tipp geben wie ich zu den gewünschten Ergebnis komme? Ist (*) [mm] \equiv [/mm] 0 überhaupt zu zeigen?

Gibt es ein gutes Skript oder Formelsammlung wo Sätze über die Di-und Trigamma oder allgemein Polygamma Funktion aufgelistet sind? Es sollte aber über das was in Wikipedia steht hinaus gehen.


Danke für eure Hilfe
Viele Grüße
Lyx  

        
Bezug
Trigamma-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Do 19.04.2012
Autor: rainerS

Hallo lyx!

> Hallo an alle,
>  
> Ich  habe diese Frage in keinen anderen Forum gestellt.
> Nachdem Ihr mir bei meiner letzten Frage so gut geholfen
> habt, habe ich eine weitere Frage zu meine Problem:
>  
> Ich habe eine Summe aus Trigammafunktionen [mm]\psi_1:[/mm]
>  
> [mm]\frac{I}{4d^2h}\left[ \psi_1 \left( \frac{1}{2}+\frac{n}{2}-\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}+\frac{n}{2}+\frac{h}{d}I \right) - \psi_1 \left(\frac{1}{2}-\frac{n}{2}-\frac{h}{d}I\right) +\psi_1 \left(\frac{1}{2}-\frac{n}{2}+\frac{h}{d}I\right) \right][/mm]
>      (*)
>  
> Dabei bezeichnet I die komplexe Einheit,
> h und d sind Parameter mit h,d [mm]\in \IR_+[/mm] , und n [mm]\in \IN.[/mm]
>  
> Nach den dahinterliegenden physikalischen Überlegungen
> müsste (*) identisch 0 sein. Ich versuche also zu zeigen,
> dass auch mathematisch gilt
>  
> (*) [mm]\equiv[/mm] 0
>  
> bisher habe ich versucht die Integraldarstellung der
> Trigammafunktion
>
> [mm]\psi_1(z)[/mm] = - [mm]\int_0^1 \frac{x^{z-1} \ln x}{1-x}dx[/mm]
>  
> in (*) einzusetzen. Dies führt mich aber nicht zu den
> gewünschten Ergebnis.
>
> Kann mir jemand von euch einen Tipp geben wie ich zu den
> gewünschten Ergebnis komme? Ist (*) [mm]\equiv[/mm] 0 überhaupt zu
> zeigen?
>  
> Gibt es ein gutes Skript oder Formelsammlung wo Sätze
> über die Di-und Trigamma oder allgemein Polygamma Funktion
> aufgelistet sind? Es sollte aber über das was in Wikipedia
> steht hinaus gehen.

[]Digital Library of Mathematical Function, Kap. 5.

Die Reflexionsformel steht aber schon in der Wikipedia, damit kannst du den 1. und 4. sowie den 2. und 3. Term zusammenfassen. Dann bleibt die Differenz zweier zueinander konjugiert komplexer Terme übrig, also ist das Ergebnis auf jeden Fall rein imaginär.  Das siehst du auch, indem du für die Sinusfunktionen im Nenner die Additionstheoreme anwendest und [mm] $\cos(ix) =\cosh [/mm] x$ benutzt.

  Viele Grüße
    Rainer

Bezug
        
Bezug
Trigamma-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Fr 20.04.2012
Autor: rainerS

Hallo Lyx!

Es gibt noch ein einfacheres Argument: als meropmorphe Funktion hat die Trigammafunktion in ganz [mm] $\IC$ [/mm] außer an ihren Polstellen die Eigenschaft [mm] $\psi_1(\overline{z})=\overline{\psi_1(z)}$. [/mm] Daher sind jeweils die beiden ersten und die beiden letzten Terme deiner Summe konjugiert komplex zueinander, und die ganze Summe hat den Realteil 0.

Aus den Cauchy-Riemann-DGLen folgt, dass der Imaginärteil konstant sein muss. Die Konstante kannst du durch Einsetzen irgendwelcher Werte für deine Konstanten bestimmen, z.B. $h=n=0$.

  Viele Grüße
     Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]