www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Trennungssatz von Hahn-Banach
Trennungssatz von Hahn-Banach < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennungssatz von Hahn-Banach: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:42 Mi 23.05.2018
Autor: mathstu

Aufgabe
Sei M [mm] \subset [/mm] X abgeschlossen und konvex, sei X ein Hilbertraum und sei x [mm] \not\in [/mm] M. Beweise mit Hilfe des Projektionssatzes, dass [mm] \phi \in [/mm] X', also ein stetig lineares Funktional existiert mit
[mm] Re\phi(x) [/mm] < [mm] inf\{Re\phi(y) : y \in M\}. [/mm]

Hallo,

Es geht um obige Aufgabe und ich habe damit so meine Probleme.
Der Projektionssatz den wir in der VL hatten sagt aus, dass wir zu jedem Element des Hilbertraumes ein nächstes Element in M finden.
Also existiert für unser x [mm] \not\in [/mm] M, [mm] x_{0} \in [/mm] M, so dass
[mm] \parallel x-x_{0}\parallel\le\parallel x-x_{1}\parallel [/mm] für alle [mm] x_{1} \in [/mm] M.
Ich sehe allerdings überhaupt nicht, wie ich diese Aussage des Projektionssatzes zum Beweis der Aufgabe benutzen kann oder wenigstens wie der nächste Schritt aussehen würde.
Ich würde mich freuen wenn mir jemand behilflich sein kann.

Viele Grüße, mathstu


        
Bezug
Trennungssatz von Hahn-Banach: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mi 23.05.2018
Autor: fred97

Zur Orientierung schau Dir mal Satz 1.3 und Kor.1.4 in

http://num.math.uni-goettingen.de/werner/opti.pdf

an und nutze aus, wie man stetige lineare Funktionale auf Hilberträumen mit Hilfe des Skalarprodukts darstellen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]