www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Transformationssatz
Transformationssatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Fr 21.05.2004
Autor: crossconnexion

hi,

ich grüble jetzt schon seid stunden an folgendem beispiel:

überbegriff des beispiels: transformation ...

Sei X (stochastische grösse) gleichverteilt auf [mm] (-\bruch{Pi}{2},\bruch{Pi}{2}), [/mm] das heißt
[mm] f_{x}(x)=\bruch{1}{Pi} [/mm] für [mm] -\bruch{Pi}{2}
a) Sei Y = sin(X). Zeige, dass [mm] f_{y}(y)=\bruch{1}{Pi}*\bruch{1}{\wurzel{1-y^{2}}} [/mm]
b) Sei Z=tan(X). Berechne die Dichte [mm] f_{z}(z) [/mm]

Ich denke mal man muss hier den Transformationssatz für dichten [mm] f_{y}(y)=f_{x}(g^{-1}(y))*g^{-1}(y)^{'} [/mm] anwenden, leider ohne erfolg.

bitte um hilfe und vielen dank im vorhinein!

thomas

        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Fr 21.05.2004
Autor: Stefan

Hallo Thomas,

Vorschlag von mir:

Die erste Rechnung führe ich komplett vor, die zweite fange ich an und sie wird dann von dir beendet. Du stellst dein Ergebnis, vielleicht versehen mit ein paar zusätzlichen Schritten oder Kommentaren, hier herein und wir kontrollieren es dann.

Also, zur ersten Aufgabe:

> a) Sei Y = sin(X). Zeige, dass
> [mm] f_{y}(y)=\bruch{1}{Pi}*\bruch{1}{\wurzel{1-y^{2}}} [/mm]
>  
> Ich denke mal man muss hier den Transformationssatz für
> dichten [mm] f_{y}(y)=f_{x}(g^{-1}(y))*g^{-1}(y)^{'} [/mm] anwenden,

[ok]

Das ist doch völlig richtig. Man muss es nur konsequent durchziehen. Machen wir das doch mal:

Nach deiner Formel (die wahr ist) gilt (ich rechne so, als würde ich die Ableitung von [mm] $\arcsin$ [/mm] gerade nicht kennen und müsste sie mir herleiten (okay, so ist es auch... ;-)):

[mm]f_Y(y) = \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[} \cdot \arcsin'(y)[/mm]

[mm] = \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(y) \cdot \frac{1}{\sin'(\arcsin(y))}[/mm]

[mm]= \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(y)\cdot \frac{1}{\cos(\arcsin(y))}[/mm]

[mm]= \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(y) \cdot \frac{1}{\sqrt{1 - \sin^2(\arcsin(y))}}[/mm]

[mm]= \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(y) \cdot \frac{1}{\sqrt{1 - y^2}}[/mm]


>  b) Sei Z=tan(X). Berechne die Dichte [mm] f_{z}(z) [/mm]

Nach deiner Formel gilt:

[mm]f_Z(z) = \frac{1}{\pi} \cdot 1_{]-\frac{\pi}{2}, \frac{\pi}{2}[}(z) \cdot \arctan'(z)[/mm]

Okay, die Ableitung vom Arcustangens kenne sogar ich auf Anhieb. Entweder du schaust sie nach oder aber du leitest sie wie ich oben her.

Melde dich mal mit deinem Ergebnis zur Kontrolle. :-)

Ich hoffe ich konnte dir helfen.

Liebe Grüße
Stefan


Bezug
                
Bezug
Transformationssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Sa 22.05.2004
Autor: crossconnexion

hallo stefan,

vorerst vielen(!!) dank für deine hilfe. ich habe jetzt auch entdeckt welchen fehler ich gemacht habe. ich habe [mm] sin^{-1}(x) [/mm] als  [mm] \bruch{1}{sin(x)} [/mm] interpretiert... und daher bin ich nie zu einem ergebnis gekommen...

aber hier meine lösung zu punkt b:
einsetzen in den transformationssatz: [mm] f_Z(z) = \bruch{1}{\pi} \cdot arctan'(z) [/mm]

die erste ableitung von [mm] arctan(z) [/mm] ist [mm] \bruch{1}{1+z^{2}} [/mm] (ich hab nachgesehen :-) )
daher ist die gesuchte Dichte: [mm] f_Z(z) = \bruch{1}{\pi} \cdot \bruch{1}{1+z^{2}} [/mm]

Um die Grenzen der Dichte zu ermitteln habe ich die Def. der Dichte herangezogen und sozusagen "halbiert" da der tan um 0 symetrisch ist:
[mm] \integral_{0}^{i} {\bruch{1}{\pi} \cdot \bruch{1}{1+z^{2}} dz} = \bruch{1}{2} [/mm]
das ganze nach i aufgelöst ergibt für i unendlich. Somit erstrecht sich die Dichte von [mm]- \infty[/mm] bis  [mm] \infty[/mm].

soweit meine lösung, ich hoffe sie stimmt.

bg und nochmal danke für die hilfe,
thomas


Bezug
                        
Bezug
Transformationssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Sa 22.05.2004
Autor: Stefan

Hallo Thomas!

Perfekt! :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]