www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Transformation der Delta-Distr
Transformation der Delta-Distr < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation der Delta-Distr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mi 24.10.2012
Autor: adefg

Aufgabe
Ist T eine Temperierte Distribution, so wird ihre Fourier-Transformation durch die Gleichung [mm] \hat T(\hat\phi) [/mm] = [mm] T(\phi) \forall\phi\in\mathcal [/mm] S (Raum der schnell fallenden Funktionen) definiert.
Zeigen Sie mit dieser Definition, dass für die Deltadistribution [mm] {\hat\delta} [/mm] = [mm] \frac{1}{2\pi} [/mm] und [mm] {\hat 1} =\delta [/mm] gilt.

Hallo,
ich habe einige Fragen zu obiger Aufgabe:
1. Kann es sein, dass die Definition so wie sie in der Aufgabe gegeben ist falsch ist? Die Aufgabe stammt aus einem Physik-Übungsblatt, ich kenne die Definition für Distributionen aber nur als [mm] \hat T(\phi) [/mm] = [mm] T(\hat\phi). [/mm] Oder ist das äquivalent?

2. Selbiges Übungsblatt definiert die Fourier-Transformation als [mm] {\hat f}: k\mapsto\int_{-\infty}^\infty \exp(-ikx) [/mm] f(x)dx.
Kann dann überhaupt folgen, dass [mm] {\hat\delta} [/mm] = [mm] \frac{1}{2\pi} [/mm] ?
Es gilt doch [mm] \hat\delta [/mm] = [mm] \int_{-\infty}^\infty \delta(x)\exp(-ikx)dx [/mm] = [mm] \exp(-ik\cdot [/mm] 0)=1.

Genauso erhalte ich mit der Def. [mm] \langle\hat\delta,\phi\rangle [/mm] = [mm] \langle\delta,\hat\phi\rangle, [/mm] dass
[mm] \langle\hat\delta,\phi\rangle [/mm] = [mm] \delta\left(\int_{-\infty}^\infty \phi(x)\exp(-ikx) dx\right) [/mm] = [mm] \langle 1,\phi\rangle, [/mm] also [mm] \hat\delta [/mm] = 1.

Kann da vielleicht wer etwas Licht ins Dunkel bringen? :)

        
Bezug
Transformation der Delta-Distr: Signaltheorie
Status: (Antwort) fertig Status 
Datum: 17:34 Do 25.10.2012
Autor: Infinit

Hallo adefg,
aus der Signaltheorie kenne ich auch nur den Zusammenhang, dass die Deltadistribution im Zeitbereich zu einer glatten 1 im Frequenzbereich führt. Der Faktor [mm] \bruch{1}{2 \pi} [/mm] ist der Normierungsfaktor für die Rücktransformation. Was es noch gibt, ist, dass man diesen Normierungsfaktor gleichmäßig auf die Hin- und die Rücktransformation aufteilt. Entsprechend taucht dann bei beiden Transformationen ein Faktor [mm] \wurzel{\bruch{1}{2 \pi}} [/mm] auf.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]