www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Transformation Vektor
Transformation Vektor < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation Vektor: Hilfe / Kontrolle Ansatz
Status: (Frage) überfällig Status 
Datum: 00:01 So 16.02.2014
Autor: berndbrot

Aufgabe
Zwischen Zylinderkoordinaten [mm] (r,\theta, [/mm] z) und kartesischen Koordinaten besteht der Zusammenhang: [mm] x=rcos\theta, y=rsin\theta, [/mm] z=z. An einem Punkt P auf der Zylinderoberfläche r=const. wird ein neues Koordinatensystem gewählt. x' in radialer Richtung, y' in tangentialer Richtung und z' in z Richtung.
a) Ermittle die Matrix A zur Berechnung von T' (3x3 Spannungsmatrix; Gleichung [mm] T'=A^{T}TA) [/mm]
b) Drücke die Komponenten eines Vektors [mm] t_{x'}, t_{y'}, t_{z'}(Spannungsvektor)auf [/mm] der Zylinderoberfläche an der stelle P  mit Hilfe der Elemente der original Matrix (Spannungsmatrix) T aus.

Hallo, bräuchte Hilfe mit obiger Aufgabe, speziell Aufgabenteil b)

Meine Lösung für a) ist wie folgt:

Matrix zur Transformation von kartesisch zu Zylinderkoordinaten:

[mm] A=\pmat{ cos\theta & sin\theta & 0 \\ -sin\theta & cos\theta & 0 \\ 0 & 0 & 1} [/mm]

Für Aufgabenteil b) bin mich mir nicht sicher. Hier mein Ansatz:
erstmal ist die Spannungsmatrix symmetrisch:

[mm] T=\pmat{ T_{11} & T_{12} & T_{13} \\ T_{12} & T_{22} & T_{23} \\ T_{13} & T_{23} & T_{33}} [/mm]

Gefragt ist nach dem Vektor im gestrichenen Koordinatensystem in Abhängigkeit von den Elementen in T:

[mm] \vec{t'}=A\vec{t} [/mm]        
[mm] \vec{t}=T\vec{n} [/mm]   -   wobei n der Normalenvektor der Ebene ist.

d.h.:

[mm] \vec{t'}=A(T\vec{n}) [/mm]

mit: [mm] \vec{n} [/mm] = [mm] \pmat{ r*cos\theta \\ r*sin\theta \\ 0 } [/mm] * [mm] \wurzel{(r*cos\theta)^{2}+(r*sin\theta)^{2}}=\pmat{ cos\theta \\ sin\theta \\ 0 } [/mm]

Ist der Ansatz bis hier her richtig???


Danke!!!  

        
Bezug
Transformation Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 So 16.02.2014
Autor: berndbrot

Gerade noch aufgefallen:

der Vektor n ist ja auch im gestrichenen Koordinatensystem gegeben, oder?!?!

Also müsste es ja heißen:

[mm] \vec{n'} [/mm] = [mm] \pmat{ r*cos\theta \\ r*sin\theta \\ 0 } [/mm] * [mm] \wurzel{(r*cos\theta)^{2}+(r*sin\theta)^{2}}=\pmat{ cos\theta \\ sin\theta \\ 0 } [/mm]

[mm] \vec{n}=A^{T}\vec{n'} [/mm]

Alles eingesetzt wäre dann:

[mm] \vec{t'}=A(T(A^{T}\vec{n'})) [/mm]

Bezug
        
Bezug
Transformation Vektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 18.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]