www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Transformation Gleichverteilun
Transformation Gleichverteilun < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation Gleichverteilun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 01.11.2006
Autor: patrick.boeert

Aufgabe
Sei X stetig gleichverteilte Zufallsvariable aus Einheitsintervall [0,1]. Berechnen Sie Erwartungswert von transformierten Zufallsvariablen 1/x und log(x).

Das Einheitsintervall ist abgeschlossen und die Transformation damit nicht sauber definiert, oder? Bei der Berechnung des Erwartungswertes und der Summation stehen nicht definierte Werte in den Grenzfällen.

Wie behandelt man sowas?
Jemand eine Ahnung?

Vielen Dank für jeden Tipp,
Patrick

P.S:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Transformation Gleichverteilun: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 01.11.2006
Autor: luis52

Hallo Patrick,

die Transformation ist schon sauber definiert, denn zwischen einer
Gleichverteilung in [0,1] bzw. in (0,1) gibt es so gut wie keine
Unterschiede. Im ersten Fall ist zu fragen, ob [mm] $\mbox{E}[1/X]$ [/mm]
ueberhaupt existiert. Sauber hingeschrieben musst du fragen, ob der
Grenzwert [mm] $\int_0^1(1/x)dx=\lim_{t\to 0+}\int_t^1(1/x)dx$ [/mm] existiert.
(Die Obergrenze macht keine Schwierigkeit). Eine Stammfunktion ist
[mm] $\log(x)$, [/mm] so dass der Grenzwert von [mm] $\log(1)-\log(t)$ [/mm] bestimmt werden
muss, der jedoch nicht existiert. Mithin besitzt $1/X$ keinen
Erwartungswert.

Die Vorgehensweise fuer die Berechnung von [mm] $\mbox{E}[\log(X)]$ [/mm] ist
analog, jedoch existiert hier der Erwartungswert. Ich erhalte $-1$.

hth


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]