www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Trägergerade-Ebenenschar
Trägergerade-Ebenenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägergerade-Ebenenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 So 03.11.2013
Autor: Bea1005

Ich habe eine Trägergerade
g=(x=1;y=−1;z=4)+r(x=2;y=−2;z=1)

(Eigentlich sollte es wie vektoren untereinander aufgelistet sein)

Nun soll ich daraus eine Ebenenschar! gleichung zaubern, deren Ebenen sich alle in dieser Geraden schneiden ...

Kann mir jemand helfen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: onlinemathe.de

        
Bezug
Trägergerade-Ebenenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 So 03.11.2013
Autor: abakus


> Ich habe eine Trägergerade
> g=(x=1;y=−1;z=4)+r(x=2;y=−2;z=1)

Hallo,
g hat also die Form 
[mm]\overrightarrow{x}= \vektor{1 \\-1\\4}+r \vektor{2 \\ -2\\1}[/mm]
Eine Ebene, die garantiert g enthält, hat die Form
[mm]\overrightarrow{x}= \vektor{1 \\-1\\4}+r \vektor{2 \\ -2\\1} +s \vektor{... \\ ...\\...} [/mm] .
Wenn das nicht nur eine einzelne Ebene, sondern eine Ebenenschar sein soll, dürfen dort nicht ausschließlich 3 konkrete Zahlen stehen.
Denkbar wäre so etwas wie 
 [mm]\vektor{a \\ 1\\3} [/mm] oder  [mm]\vektor{0 \\ 5-a\\a^2}[/mm] oder ... oder ... oder...
Gruß Abakus


>

> (Eigentlich sollte es wie vektoren untereinander
> aufgelistet sein)

>

> Nun soll ich daraus eine Ebenenschar! gleichung zaubern,
> deren Ebenen sich alle in dieser Geraden schneiden ...

>

> Kann mir jemand helfen?

>

> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt: onlinemathe.de

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]