www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Diff'barkeit
Totale Diff'barkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Diff'barkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Do 14.02.2008
Autor: Walde

Hallo liebes Forum,

es gilt (mal abgekürzt), dass wenn alle partiellen Ableitungen einer Funktion existieren und auch stetig sind (in einem Punkt), die Funktion total diff'bar ist (in dem Punkt).

Dies ist nur eine hinreichende Bedingung,d.h. eine Funktion kann total diff'bar sein, obwohl nicht alle ihrer part. Ableitungen stetig sind.  

Mein Anliegen:

Kann mir jemand  ein Beispiel für eine solche Funktion (am besten von [mm] \IR^2\to\IR^2) [/mm] geben?

LG walde

        
Bezug
Totale Diff'barkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 14.02.2008
Autor: MatthiasKr

Hallo,
> Hallo liebes Forum,
>  
> es gilt (mal abgekürzt), dass wenn alle partiellen
> Ableitungen einer Funktion existieren und auch stetig sind
> (in einem Punkt), die Funktion total diff'bar ist (in dem
> Punkt).
>  
> Dies ist nur eine hinreichende Bedingung,d.h. eine Funktion
> kann total diff'bar sein, obwohl nicht alle ihrer part.
> Ableitungen stetig sind.  
>
> Mein Anliegen:
>  
> Kann mir jemand  ein Beispiel für eine solche Funktion (am
> besten von [mm]\IR^2\to\IR^2)[/mm] geben?
>  
> LG walde  

gute frage. ich wuerde nach einer antwort im eindimensionalen suchen und diese dann versuchen zu verallgemeinern:

das parade-beispiel fuer eine funktion, die diffbar aber nicht stetig diffbar ist, ist im $R$:

[mm] $f(x)=x^2\sin(\frac1x)$ [/mm]

im mehrdimensionalen kann man es dann entsprechend mal mit

[mm] $f(x)=|x|^2\sin\left(\frac{1}{|x|^2}\right)$ [/mm]

also dem rotationssymmetrischen pendant zur fkt. oben (x in [mm] $R^n$). [/mm]

Habe es jetzt nicht 100%ig zu ende gedacht, aber ich denke, diese funktion ist in 0 diffbar, waehrend die partiellen ableitungen bis in den ursprung hinein oszillieren (wie im 1-dim.)

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]