www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Torsion in IR[x]
Torsion in IR[x] < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Torsion in IR[x]: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:01 Mi 13.06.2012
Autor: triad

Aufgabe
a) Bestimme alle Torsionselemente in

(i)  [mm] \IR[x]/(x^3+x^2+x+1)\IR[x] [/mm] als [mm] $\IR[x]$-Modul, [/mm]
(ii) [mm] \IR[x]/(x^3+x^2+x+1)\IR[x] [/mm] als [mm] $\IR$-Modul. [/mm]

b) Sei R ein Integritätsbereich und seien M,N zwei R-Moduln. Zeige, dass [mm] M_t\oplus N_t=(M\oplus N)_t. [/mm]

Dabei ist [mm] $M\oplus [/mm] N [mm] :=$\{(m,n)\mid m\in M, n\in N\} [/mm] mit komponentenweise definierten Verknüpfungen die direkte Summe von M und N.

Hallo,

i) Hier ist jedes Element Torsionselement, da $R/pR$ über R mit [mm] p\not= [/mm] 0 immer ein Torsionsmodul ist, denn multipliziert man ein Element aus $R/pR$ mit p so wird es ja Null.


ii) Moduln über Körper (hier [mm] \IR) [/mm] sind immer torsionsfrei, d.h. der Torsionsuntermodul [mm] M_t [/mm] ist nur [mm] \{0\} [/mm] (d.h. nur die 0 ist Torsionselement). Moduln über Körper sind Vektorräume, VR sind immer torsionsfrei, da [mm] \lambda\cdot{v}\not= [/mm] 0 [mm] \forall\ \; \lambda\not= [/mm] 0, [mm] v\not= [/mm] 0.


b) hier muss man [mm] \subseteq [/mm] und [mm] \supseteq [/mm] zeigen, richtig? hab dazu keinen Ansatz


        
Bezug
Torsion in IR[x]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Do 14.06.2012
Autor: triad

sind i) und ii) richtig oder muss man das noch beweisen?

Bezug
        
Bezug
Torsion in IR[x]: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 15.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]