www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Topologie und Filter
Topologie und Filter < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie und Filter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 Do 05.05.2011
Autor: Primavera88

hallo,
kann mir jemand vielleicht erklären, worin der Unterschied zwischen eines Filters und einer Topologie besteht? Außer dass die 0 bei der Topologie enthalten ist, und 0 nicht im Filter erhalten ist.

        
Bezug
Topologie und Filter: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Do 05.05.2011
Autor: SEcki


>  kann mir jemand vielleicht erklären, worin der
> Unterschied zwischen eines Filters und einer Topologie
> besteht?

Das eine hat mit dem andren erstmal nicht viel zu tun. Ein Umgebungsfilter setzt aber, logischerweise, eine topologische Struktur vorraus. Vielleicht solltest du uns deine Definitionen zeigen und sagen, was dich stört.

SEcki


Bezug
        
Bezug
Topologie und Filter: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Do 05.05.2011
Autor: fred97


> hallo,
>  kann mir jemand vielleicht erklären, worin der
> Unterschied zwischen eines Filters und einer Topologie
> besteht? Außer dass die 0 bei der Topologie enthalten ist,
> und 0 nicht im Filter erhalten ist.

Was soll denn hier "0" bedeuten ?

Sei X eine nichtleere Menge.

A. Eine echte Teilmenge [mm] \mathcal{F}\subset\mathcal{P}(X) [/mm]  heißt Filter auf X, wenn gilt:

   1. [mm] \emptyset\notin\mathcal{F} [/mm] und [mm] X\in\mathcal{F}, [/mm]
   2. [mm] F,G\in\mathcal{F}\ \Rightarrow\ F\cap G\in\mathcal{F}, [/mm]
   3. [mm] F\in\mathcal{F},\;G\supset [/mm] F\ [mm] \Rightarrow\ G\in\mathcal{F}. [/mm]

B. Eine  Teilmenge [mm] \mathcal{T}\subset\mathcal{P}(X) [/mm] heißt eine Topologie auf X, wenn gilt:

   1. [mm] \emptyset\in\mathcal{T} [/mm] und [mm] X\in\mathcal{T}, [/mm]
   2. [mm] F,G\in\mathcal{T}\ \Rightarrow\ F\cap G\in\mathcal{T}, [/mm]
   3. Die Vereinigung beliebig vieler  Mengen aus  [mm] \mathcal{T} [/mm] gehört wieder zu [mm] \mathcal{T} [/mm]


Siehst Du die Unterschiede ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]