www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Topologie Blatt 1
Topologie Blatt 1 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie Blatt 1: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 08:52 Fr 15.10.2021
Autor: ireallydunnoanything

Aufgabe
Wir definieren für x, y [mm] \in \IR [/mm] die Abbildung |-|: [mm] R^2 \to [/mm] R+, |x| = [mm] \wurzel{x_1^2 + x_2^2} [/mm] (also der euklidische Abstand vom Ursprung) und setzen d(x,y) [mm] =\begin{cases} ||x-y||, & \mbox{x und y liegen auf einer Geraden durch 0} & \mbox{||x||+||y|| } sonst \end{cases} [/mm]

a) Zeigen Sie, dass d eine Metrik auf [mm] R^2 [/mm] definiert.

b) Skizzieren Sie die offenen Kugeln [mm] B_r(x) [/mm] für r > 0 ud x [mm] \in R^2. [/mm] Diese Metrik heißt französische Eisenbahnmetrik. Wieso ?


zu a) Ich weiß wie eine Metrik definiert ist (Positivität, Symmetrie und Dreiecksungleichung). Nur leider weiß ich nicht, wie ich in diesem Fall beweisen soll, dass dies eine Metrik ist. Für ein wenig Hilfe wäre ich sehr dankbar.

zu b) Diese Metrik heißt französische Eisenbahnmetrik, da das Eisenbahnnetz in Frankreich sehr auf Paris zentriert war und man deswegen oft große Umwege in Kauf nehmen musste, wenn man einen anderen Ort erreichen wollte. Ich bräuchte nur ein wenig Hilfe bei der Skizzierung der offenen Kugeln wie in der Aufgabe verlangt.

Ich habe diese Frage in keinem anderen Forum oder auf anderen Webseiten gestellt.

        
Bezug
Topologie Blatt 1: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 15.10.2021
Autor: Gonozal_IX

Hiho,

>  zu a) Ich weiß wie eine Metrik definiert ist
> (Positivität, Symmetrie und Dreiecksungleichung). Nur
> leider weiß ich nicht, wie ich in diesem Fall beweisen
> soll, dass dies eine Metrik ist. Für ein wenig Hilfe wäre
> ich sehr dankbar.

In dem du diese drei Eigenschaften nachweist!
Am Besten mit Fallunterscheidungen:

am Beispiel der Symmetrie ist zu zeigen: $d(x,y) = d(y,x)$
1. Fall: x,y liegen auf einer Geraden, dann ist $d(x,y) = [mm] \ldots$ [/mm]
2. Fall: x,y liegenn icht auf einer Geraden, dann ist $d(x,y) = [mm] \ldots$ [/mm]

die anderen Dinge analog.

> zu b) Diese Metrik heißt französische Eisenbahnmetrik, da
> das Eisenbahnnetz in Frankreich sehr auf Paris zentriert
> war und man deswegen oft große Umwege in Kauf nehmen
> musste, wenn man einen anderen Ort erreichen wollte.

Welchen Umweg genau?
Tipp: es ist im Fall $d(x,y) = ||x|| + ||y|| = ||x - 0|| + ||y-0||$
D.h. der Abstand von x und y lässt sich in Worten wie berechnen?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]