www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Topologie
Topologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 17:04 So 22.05.2016
Autor: Ardbeg

Aufgabe
Sei X eine Menge und [mm] \mathcal{T} [/mm] := [mm] \{ A \subseteq X | X \setminus A (endlich) \} \cup \{ \emptyset \}. [/mm]

a) Zeigen Sie, dass [mm] \mathcal{T} [/mm] eine Topologie auf X ist.

b) Zeigen Sie, dass [mm] \mathcal{T} [/mm] die diskrete Topologie ist (dh. [mm] \mathcal{T} [/mm] = [mm] \mathcal{P}(X) [/mm] ), wenn X endlich ist.

c) Zeigen Sie, dass X kompakt ist.

d) Charakterisieren Sie alle abgeschlossenen Mengen in X.

e) Charakterisieren Sie alle alle kompakten Mengen in X.

f) Sei U [mm] \subseteq [/mm] X offen. Berechnen Sie den Abschluss von X.

g) Charakterisieren Sie alle stetigen Funktionen f: X [mm] \to [/mm] X .

So, ich will Schritt für Schritt die Aufgabe durchgehen, damit ich auch sicher sein kann, dass ich alles richtig verstehe.

Fangen wir mal mit a) an.

Um zu zeigen, dass [mm] \mathcal{T} [/mm] eine Topologie ist, müsste ich also zeigen, dass X in X und die leere Menge in X enthalten sind. Dafür suche ich mir wohl für den ersten Teil ein a [mm] \in [/mm] A raus und da dies Teilmenge von X ist, muss es auch in X sein. So grob richtig? Da die leere Menge auch in [mm] \mathcal{T} [/mm] enthalten ist, würde das so auch gelten.
Dann müsste ich noch zeigen, dass für den Schnitt und  die Verknüpfung gilt, dass diese wiederum auch in der Topologie liegen. Sehe ich das richtig?

Gruß
Ardbeg

        
Bezug
Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 So 22.05.2016
Autor: hippias


> Sei X eine Menge und [mm]\mathcal{T}[/mm] := [mm]\{ A \subseteq X | X \setminus A (endlich) \} \cup \{ \emptyset \}.[/mm]
>  
> a) Zeigen Sie, dass [mm]\mathcal{T}[/mm] eine Topologie auf X ist.
>  
> b) Zeigen Sie, dass [mm]\mathcal{T}[/mm] die diskrete Topologie ist
> (dh. [mm]\mathcal{T}[/mm] = [mm]\mathcal{P}(X)[/mm] ), wenn X endlich ist.
>  
> c) Zeigen Sie, dass X kompakt ist.
>
> d) Charakterisieren Sie alle abgeschlossenen Mengen in X.
>  
> e) Charakterisieren Sie alle alle kompakten Mengen in X.
>
> f) Sei U [mm]\subseteq[/mm] X offen. Berechnen Sie den Abschluss von
> X.
>
> g) Charakterisieren Sie alle stetigen Funktionen f: X [mm]\to[/mm] X
> .
>  So, ich will Schritt für Schritt die Aufgabe durchgehen,
> damit ich auch sicher sein kann, dass ich alles richtig
> verstehe.
>
> Fangen wir mal mit a) an.
>
> Um zu zeigen, dass [mm]\mathcal{T}[/mm] eine Topologie ist, müsste
> ich also zeigen, dass X in X und die leere Menge in X
> enthalten sind. Dafür suche ich mir wohl für den ersten
> Teil ein a [mm]\in[/mm] A raus und da dies Teilmenge von X ist, muss
> es auch in X sein. So grob richtig?

Nein, das ist zu unklar. Du musst $X$ in der Form [mm] $X\backlslash [/mm] A$ darstellen, wobei $A$ eine endliche Teilmenge von $X$ ist: $X= [mm] X\backslash [/mm] A$ für welches endliche $A$?

> Da die leere Menge auch
> in [mm]\mathcal{T}[/mm] enthalten ist, würde das so auch gelten.

Was soll "würde das so auch gelten" bedeuten? Die leere Menge ist nach Definition in [mm] $\mathcal{T}$ [/mm] enthalten - fertig.

> Dann müsste ich noch zeigen, dass für den Schnitt und  
> die Verknüpfung gilt, dass diese wiederum auch in der
> Topologie liegen. Sehe ich das richtig?

Vermutlich.

>
> Gruß
> Ardbeg


Bezug
                
Bezug
Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mo 23.05.2016
Autor: Ardbeg

Also erst einmal habe ich selbst einen Tippfehler gesehen. Natürlich muss ich zeigen, dass X [mm] \in \mathcal{T} [/mm] und [mm] \emptyset \in \mathcal{T} [/mm] sind.

Das die leere Menge enthalten ist, kann man Aufgrund der Definition sehen. Nun also zeigen, dass X [mm] \in \mathcal{T} [/mm] ist. Hier würde ich mal einen Trick versuchen.
X [mm] \backslash [/mm] X = [mm] \emptyset [/mm] ist endlich ( da keine Elemente enthalten sind). Sprich, X muss also dann in [mm] \mathcal{T} [/mm] enthalten sein.

Nun will ich es für die Vereinigungsmenge mal probieren:
Sei I eine Indexmenge und die Mengen aus X beschrieben durch [mm] U_{i} \in [/mm] C [mm] \subseteq \mathcal{T} [/mm] , für i [mm] \in [/mm] I.
Dann gilt:
X [mm] \backslash \bigcup [/mm] C = X [mm] \backslash \bigcup_{i \in I} U_{i} [/mm] = [mm] \bigcap_{i \in I} [/mm] X [mm] \backslash U_{i} [/mm] (nach De Morgan)

Also ist X [mm] \backslash U_{i} [/mm] eine endliche Menge, da [mm] U_{i} \in \mathcal{T} [/mm] . Da Schnitte von zwei Mengen die Elementzahl der Menge gleich oder weniger ist, ist
[mm] \bigcap_{i \in I} [/mm] X [mm] \backslash U_{i} [/mm] = X [mm] \backslash [/mm] C [mm] \Rightarrow \bigcup [/mm] C [mm] \in \mathcal{T} [/mm]

Das dürfte doch soweit okay sein, oder?

Wenn ich die Kompaktheit zeigen will, dann wollte ich so vorgehen.

Sei X = [mm] \bigcup_{i \in I} \mathcal{O}_{i} [/mm] mit offenen Mengen [mm] \mathcal{O}_{i}. [/mm]
Sei j [mm] \in [/mm] I beliebt aber fest, mit [mm] \mathcal{O}_{j} \not= \emptyset [/mm] und für jedes x [mm] \in [/mm] X [mm] \backslash \mathcal{O}_{j} [/mm] ein [mm] j_{x} \in [/mm] I mit x [mm] \in \mathcal{O}_{j}_{x}. [/mm]
X [mm] \backslash \mathcal{O}_{j} [/mm] ist endlich, also ist X = [mm] \mathcal{O}_{j} \cup \bigcup_{x \in X \backslash \mathcal{O}_{j} } \mathcal{O}_{j}_{x} [/mm] eine endliche Teilüberdeckung. [mm] \Rightarrow [/mm] Kompaktheit.

Gruß Ardbeg

Bezug
                        
Bezug
Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Mo 23.05.2016
Autor: fred97


> Also erst einmal habe ich selbst einen Tippfehler gesehen.
> Natürlich muss ich zeigen, dass X [mm]\in \mathcal{T}[/mm] und
> [mm]\emptyset \in \mathcal{T}[/mm] sind.
>
> Das die leere Menge enthalten ist, kann man Aufgrund der
> Definition sehen. Nun also zeigen, dass X [mm]\in \mathcal{T}[/mm]
> ist. Hier würde ich mal einen Trick versuchen.
> X [mm]\backslash[/mm] X = [mm]\emptyset[/mm] ist endlich ( da keine Elemente
> enthalten sind). Sprich, X muss also dann in [mm]\mathcal{T}[/mm]
> enthalten sein.

Ja


>
> Nun will ich es für die Vereinigungsmenge mal probieren:
> Sei I eine Indexmenge und die Mengen aus X beschrieben
> durch [mm]U_{i} \in[/mm] C [mm]\subseteq \mathcal{T}[/mm] , für i [mm]\in[/mm] I.


Du meinst wohl [mm] U_i \in \mathcal{T} [/mm] und C= [mm] \bigcup_{i \in I}^{}U_i [/mm]


> Dann gilt:
> X [mm]\backslash \bigcup[/mm] C = X [mm]\backslash \bigcup_{i \in I} U_{i}[/mm]
> = [mm]\bigcap_{i \in I}[/mm] X [mm]\backslash U_{i}[/mm] (nach De Morgan)


Ganz links sollte X [mm] \setminus [/mm] C stehen !


>  
> Also ist X [mm]\backslash U_{i}[/mm] eine endliche Menge, da [mm]U_{i} \in \mathcal{T}[/mm]
> . Da Schnitte von zwei Mengen die Elementzahl der Menge
> gleich oder weniger ist, ist
> [mm]\bigcap_{i \in I}[/mm] X [mm]\backslash U_{i}[/mm] = X [mm]\backslash[/mm] C


... wieder X [mm] \setminus [/mm] C ...


> [mm]\Rightarrow \bigcup[/mm] C [mm]\in \mathcal{T}[/mm]

Neihn. Sondern C [mm]\in \mathcal{T}[/mm]

>  
> Das dürfte doch soweit okay sein, oder?

Siehe meine Kommentare


>  
> Wenn ich die Kompaktheit zeigen will, dann wollte ich so
> vorgehen.
>
> Sei X = [mm]\bigcup_{i \in I} \mathcal{O}_{i}[/mm] mit offenen
> Mengen [mm]\mathcal{O}_{i}.[/mm]
>  Sei j [mm]\in[/mm] I beliebt aber fest, mit [mm]\mathcal{O}_{j} \not= \emptyset[/mm]
> und für jedes x [mm]\in[/mm] X [mm]\backslash \mathcal{O}_{j}[/mm] ein [mm]j_{x} \in[/mm]
> I mit x [mm]\in \mathcal{O}_{j}_{x}.[/mm]
>  X [mm]\backslash \mathcal{O}_{j}[/mm]
> ist endlich, also ist X = [mm]\mathcal{O}_{j} \cup \bigcup_{x \in X \backslash \mathcal{O}_{j} } \mathcal{O}_{j}_{x}[/mm]
> eine endliche Teilüberdeckung. [mm]\Rightarrow[/mm] Kompaktheit.

Das ist O.K.

FRED

>  
> Gruß Ardbeg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]