www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tipp
Tipp < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tipp: Logarithmusfunktion
Status: (Frage) beantwortet Status 
Datum: 11:24 Sa 10.12.2011
Autor: JamesBlunt

Hallo,
ich habe noch nicht ganz verstandenet, wie man Logarithmusfunktionen ableitet..

mir ist bekannt dass die Ableitung von ln(x) = 1:x ist..
aber das hilft mir auch nicht..
Hat irgendwer gute Links dazu, oder kann mir jemand das anhand dieses Beispiels erklären?

f(x) = [mm] ln(1+x^{2}) [/mm]

Das kann ich ja jetzt noch mit den Logarithmengesetzen umschreiben:

f(x) = ln(1) * [mm] ln(x^{2}) [/mm]

Doch wie komme ich auf die erste Ableitung?

Lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Sa 10.12.2011
Autor: reverend

Hallo JamesBlunt,

hier geht es wohl eher um die Kettenregel.

>  ich habe noch nicht ganz verstandenet, wie man
> Logarithmusfunktionen ableitet..
>  
> mir ist bekannt dass die Ableitung von ln(x) = 1:x ist..

Dann weißt Du dazu eigentlich schon alles, was man wissen muss, um auch komplizierte Funktionen, die den Logarithmus beinhalten, abzuleiten.

> aber das hilft mir auch nicht..
>  Hat irgendwer gute Links dazu, oder kann mir jemand das
> anhand dieses Beispiels erklären?

Besser am Beispiel:

> f(x) = [mm]ln(1+x^{2})[/mm]
>  
> Das kann ich ja jetzt noch mit den Logarithmengesetzen
> umschreiben:
>  
> f(x) = ln(1) * [mm]ln(x^{2})[/mm]

Autsch. Das geht gar nicht.
Das folgt keinem der MBLogarithmusgesetze.

> Doch wie komme ich auf die erste Ableitung?

Indem Du die MBKettenregel anwendest.
Hier ist [mm] h(x)=1+x^2 [/mm] und [mm] g(h)=\ln{h}. [/mm]

Grüße
reverend


Bezug
                
Bezug
Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Sa 10.12.2011
Autor: JamesBlunt

ah okay danke schonmal, aber wo kommt daas ln(h) her- für g(x) ?

Lg

Bezug
                        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 10.12.2011
Autor: leduart

Hallo
bei verketteten Funktionen gibts keine Vereinbarung, wie die innere heisst. in einer Schule immer g/x) in ner anderen h(x) in ner dritten u(x) usw
du hast [mm] f(x)=ln(1+x^2) [/mm] jetzt kannst du [mm] 1+x^2=g(x) [/mm] oder [mm] 1+x^2=u(x) [/mm] oder tausend andere namen nehmen.
Immer gilt f'=''(g)*g'  f'=f'(u)*u'  usw.
namen sind Schall und Rauch
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]